Могут ли червоточины решить проблему с черными дырами? Решения уравнений поля, описывающие черные дыры Падение в чёрную дыру.

Бескрайняя Вселенная полна тайн, загадок и парадоксов. Несмотря на то, что современная наука сделала огромный скачок вперед в исследовании космоса, многое в этом бескрайнем мире остается непостижимым для человеческого мировосприятия. Нам достаточно много известно о звездах , туманностях, скоплениях и планетах. Однако на просторах Вселенной встречаются такие объекты, о существовании которых мы можем только догадываться. Например, о черных дырах нам известно крайне мало. Основные сведения и знания о природе черных дыр строятся на предположениях и догадках. Астрофизики, ученые-атомщики бьются над этим вопросом уже не один десяток лет. Что же такое черная дыра в космосе? Какова природа подобных объектов?

Говоря о черных дырах простым языком

Чтобы представить, как выглядит черная дыра, достаточно увидеть хвост уходящего в туннель поезда. Сигнальные фонари на последнем вагоне по мере углубления поезда в туннель, будут уменьшаться в размерах, пока совсем не исчезнут из поля зрения. Другими словами — это объекты, где в силу чудовищного притяжения исчезает даже свет. Элементарные частицы, электроны, протоны и фотоны не в состоянии преодолеть невидимый барьер, проваливаются в черную бездну небытия, поэтому такая дыра в пространстве и получила название — черная. Нет внутри нее ни малейшего светлого участка, сплошная чернота и бесконечность. Что находится по ту стороны черной дыры – неизвестно.

Этот космический пылесос обладает колоссальной силой притяжения и в состоянии поглотить целую галактику со всеми скоплениями и сверхскоплениями звезд, с туманностями и с темной материей в придачу. Каким образом это возможно? Остается только догадываться. Известные нам законы физики в данном случае трещат по швам и не дают объяснения происходящим процессам. Суть парадокса заключается в том, что в данном участке Вселенной гравитационное взаимодействие тел определяется их массой. На процесс поглощения одним объектом другого не оказывают влияния их качественный и количественный состав. Частицы, достигнув критического количества на определенном участке, входят в другой уровень взаимодействия, где гравитационные силы становятся силами притяжения. Тело, объект, субстанция или материя под воздействием гравитации начинает сжиматься, достигая колоссальной плотности.

Примерно такие процессы происходят при образовании нейтронной звезды , где звездная материя под воздействием внутренней гравитации сжимается в объеме. Свободные электроны соединяются с протонами, образуя электрически нейтральные частицы — нейтроны. Плотность этой субстанции огромна. Частица материи размером с кусок рафинада имеет вес в миллиарды тонн. Здесь уместным будет вспомнить общую теорию относительности, где пространство и время — величины непрерывные. Следовательно, процесс сжатия не может быть остановлен на полпути и поэтому не имеет предела.

Потенциально черная дыра выглядит как нора, в которой возможно существует переход из одного участка пространства в другой. При этом свойства самого пространства и времени меняются, закручиваясь в пространственно-временную воронку. Достигая дна этой воронки, любая материя распадается на кванты. Что находится по ту стороны черной дыры, этой гигантской норы? Возможно, там существует другое иное пространство, где действуют другие законы и время течет в обратном направлении.

В разрезе теории относительности теория черной дыры выглядит следующим образом. Точка пространства, где гравитационные силы сжали любую материю до микроскопических размеров, обладает колоссальной силой притяжения, величина которой возрастает до бесконечности. Появляется складка времени, а пространство искривляется, замыкаясь в одной точке. Поглощенные черной дырой объекты не в состоянии самостоятельно противостоять силе втягивания этого чудовищного пылесоса. Даже скорость света, которой обладают кванты, не позволяет элементарным частицам преодолеть силу притяжения. Любое тело, попавшее в такую точку, перестает быть материальным объектом, сливаясь с пространственно-временным пузырем.

Черные дыры с точки зрения науки

Если задаться вопросом, как образуются черные дыры? Однозначного ответа не будет. Во Вселенной достаточно много парадоксов и противоречий, которые невозможно объяснить с точки зрения науки. Теория относительности Эйнштейна позволяет только теоретически объяснить природу подобных объектов, однако квантовая механика и физика в данном случае молчат.

Пытаясь объяснить законами физики происходящие процессы, картина будет выглядеть следующим образом. Объект, образуется в результате колоссального гравитационного сжатия массивного или сверхмассивного космического тела. Этот процесс носит научное название — гравитационный коллапс. Термин «черная дыра» впервые прозвучал в научной среде в 1968 году, когда американский астроном и физик Джон Уиллер пытался объяснить состояние звездного коллапса. По его теории, на месте массивной звезды подвергнувшейся гравитационному коллапсу возникает пространственный и временной провал, в котором действует постоянно растущее сжатие. Все, из чего состояла звезда, уходит внутрь себя.

Такое объяснение позволяет сделать вывод, что природа черных дыр никоим образом не связана с процессами, происходящими во Вселенной. Все, что происходит внутри этого объекта, никак не отражается на окружающем пространстве при одном «НО». Сила гравитации черной дыры настолько сильна, что искривляет пространство, заставляя вращаться галактики вокруг черных дыр. Соответственно становится понятна причина, почему галактики принимают форму спиралей. Сколько понадобится времени на то, чтобы огромная галактика Млечный путь исчезла в бездне сверхмассивной черной дыры, неизвестно. Любопытен факт, что черные дыры могут возникать в любой точке космического пространства, там, где для этого созданы идеальные условия. Такая складка времени и пространства нивелирует те огромные скорости, с которыми вращаются звезды и перемещаются в пространстве галактики. Время в черной дыре течет в другом измерении. Внутри этой области никакие законы гравитации не поддаются интерпретации с точки зрения физики. Такое состояние называется сингулярностью черной дыры.

Черные дыры не проявляют никаких внешних идентификационных признаков, об их существовании можно судить по поведению других космических объектов, на которые воздействуют гравитационные поля. Вся картина борьбы не на жизнь, а на смерть происходит на границе черной дыры, которая прикрыта мембраной. Эта мнимая поверхность воронки называется «горизонтом событий». Все, что мы видим до этой границы, осязаемо и материально.

Сценарии образования черных дыр

Развивая теорию Джона Уиллера, можно сделать вывод, что тайна черных дыр скорее не в процессе ее формирования. Образование черной дыры возникает в результате коллапса нейтронной звезды. Причем масса такого объекта должна превосходить массу Солнца в три и более раз. Нейтронная звезда сжимается до тех пор, пока ее собственный свет уже не в состоянии вырваться из тесных объятий силы притяжения. Существует граничный предел в размере, до которого может сжиматься звезда, давая рождение черной дыре. Этот радиус называется гравитационным радиусом. Массивные звезды на финальной стадии своего развития должны иметь гравитационный радиус в несколько километров.

Сегодня ученые получили косвенные доказательства присутствия черных дыр в десятке рентгеновских двойных звездах. У рентгеновских звезд, пульсара или барстера нет твердой поверхности. К тому же их масса больше массы трех Солнц. Нынешнее состояние космического пространства в созвездии Лебедя – рентгеновская звезда Лебедь Х-1, позволяет проследить процесс образования этих любопытных объектов.

Исходя из исследований и теоретических предположений, сегодня в науке существует четыре сценария образования черных звезд:

  • гравитационный коллапс массивной звезды на финальном этапе ее эволюции;
  • коллапс центральной области галактики;
  • формирование черных дыр в процессе Большого взрыва;
  • образование квантовых черных дыр.

Первый сценарий является самым реалистичным, однако то количество черных звезд, с которым мы знакомы на сегодняшний день, превышает количество известных нейтронных звезд. Да и возраст Вселенной не настолько большой, чтобы такое количество массивных звезд смогло пройти полный процесс эволюции.

Второй сценарий имеет право на жизнь, и тому существует яркий пример – сверхмассивная черная дыра Стрелец А*, приютившаяся в центре нашей галактики. Масса этого объекта 3,7 массы Солнца . Механизм этого сценария схож со сценарием гравитационного коллапса с той лишь разницей, что коллапсу подвергается не звезда, а межзвездный газ. Под воздействием гравитационных сил происходит сжатие газа до критической массы и плотности. В критический момент материя распадается на кванты, образуя черную дыру. Однако эта теория вызывает сомнения, так как недавно астрономы Колумбийского университета выявили спутники черной дыры Стрелец А*. Ими оказалось множество мелких черный дыр, которые вероятно образовались другим способом.

Третий сценарий больше теоретический и связан с существованием теории Большого взрыва. В момент образования Вселенной часть материи и гравитационные поля претерпели флуктуацию. Другими словами, процессы пошли другим путем, не связанным с известными процессами квантовой механики и ядерной физики.

Последний сценарий ориентирован на физику ядерного взрыва. В сгустках материи в процессе ядерных реакций под влиянием гравитационных сил происходит взрыв, на месте которого образуется черная дыра. Материя взрывается внутрь себя, поглощая все частицы.

Существование и эволюция черных дыр

Имея приблизительное представление о природе столь странных космических объектов, интересно другое. Какие истинные размеры черных дыр, как быстро они растут? Размеры черных дыр определяются их гравитационным радиусом. Для черных дыр радиус черной дыры определяется ее массой и называется радиусом Шварцшильда. К примеру, если объект имеет массу равную массу нашей планеты, то радиус Шварцшильда в таком случае составляет 9 мм. Наше главное светило имеет радиус в 3 км. Средняя плотность черной дыры, образовавшейся на месте звезды массой 10⁸ масс Солнца, будет близкой к плотности воды. Радиус такого образования составит 300 млн. километров.

Вероятно, что такие гигантские черные дыры располагаются в центре галактик. На сегодняшний день известны 50 галактик, в центре которых находятся огромные временные и пространственные колодцы. Масса таких гигантов составляет миллиарды масса Солнца. Можно только представить, какой колоссальной и чудовищной силой притяжения обладает такая дыра.

Что касается мелких дырочек, то это мини-объекты, радиус которых достигает ничтожных величин, всего 10¯¹² см. Масса такой крошки составляет 10¹⁴гр. Подобные образования возникли в момент Большого взрыва, однако со временем увеличились в размерах и сегодня красуются в космическом пространстве в качестве монстров. Условия, при которых шло образование мелких черных дыр, ученые сегодня пытаются воссоздать в земных условиях. Для этих целей проводятся эксперименты в электронных коллайдерах, посредством которых элементарные частицы разгоняются до скорости света. Первые опыты позволили получить в лабораторных условиях кварк-глюонную плазму — материю, которая существовала на заре образования Вселенной. Подобные эксперименты позволяют надеяться, что черная дыра на Земле – дело времени. Другое дело, не обернется ли подобное достижение человеческой науки катастрофой для нас и для нашей планеты. Создав искусственно черную дыру, мы можем открыть ящик Пандоры.

Последние наблюдения за другими галактиками, позволили ученым открыть черные дыры, размеры которых превышают все мыслимые ожидания и предположения. Эволюция, которая происходит с подобными объектами, позволяет лучше понять, от чего растет масса черных дыр, каков ее реальный предел. Ученые пришли к выводу, что все известные черные дыры выросли до своих реальных размеров в течение 13-14 млрд. лет. Разница в размерах объясняется плотностью окружающего пространства. Если у черной дыры достаточно пищи в пределах досягаемости сил притяжения, она растет словно на дрожжах, достигая массы в сотни и тысячи солнечных масс. Отсюда и гигантские размеры таких объектов, расположенных в центре галактик. Массивное скопление звезд, огромные массы межзвездного газа являются обильной пищей для роста. При слиянии галактик, черные дыры могут сливаться воедино, образуя новый сверхмассивный объект.

Судя по анализу эволюционных процессов, принято выделять два класса черных дыр:

  • объекты с массой в 10 раз больше солнечной массы;
  • массивные объекты, масса которых составляет сотни тысяч, миллиарды солнечных масс.

Существуют черные дыры со средней промежуточной массой равной 100-10 тыс. масс Солнца, однако их природа до сих пор остается неизвестной. На одну галактику приходится примерно один такой объект. Изучение рентгеновских звезд позволило найти на расстоянии 12 миллионов световых лет в галактике М82 сразу две средние по массе черные дыры. Масса одного объекта варьируется в диапазоне 200-800 масс Солнца. Другой объект гораздо больше и имеет массу 10-40 тыс. солнечных масс. Судьба таких объектов интересна. Располагаются они вблизи звездных скоплений, постепенно притягиваясь к сверхмассивной черной дыре, расположенной в центральной части галактики.

Наша планета и черные дыры

Несмотря на поиски разгадки о природе черных дыр, научный мир беспокоит место и роль черной дыры в судьбе галактики Млечный путь и, в частности, в судьбе планеты Земля. Складка времени и пространства, которая существует в центре Млечного пути, постепенно поглощает все существующие вокруг объекты. Уже поглощены в черной дыре миллионы звезд и триллионы тонн межзвездного газа. Со временем дойдет очередь и до рукавов Лебедя и Стрельца, в которых находится Солнечная система, пройдя расстояние в 27 тыс. световых лет.

Другая ближайшая сверхмассивная черная дыра находится в центральной части галактики Андромеда. Это около 2,5 млн. световых лет от нас. Вероятно, до того времени, как наш объект Стрелец А* поглотит собственную галактику, следует ожидать слияния двух соседствующих галактик. Соответственно произойдет и слияние двух сверхмассивных черных дыр в одно целое, страшное и чудовищное по размерам.

Совершенно другое дело — черные дыры небольших размеров. Чтобы поглотить планету Земля достаточно черной дыры радиусом в пару сантиметров. Проблема заключается в том, что по своей природе черная дыра совершенно безликий объект. Из ее чрева не исходит никакое излучение, ни радиация, поэтому заметить столь загадочный объект достаточно трудно. Только с близкого расстояния можно обнаружить искривление фонового света, которое свидетельствует о том, что в этом районе Вселенной имеется дырка в пространстве.

На сегодняшний день ученые установили, что ближайшая к Земле черная дыра — это объект V616 Monocerotis. Чудовище расположено в 3000 световых лет от нашей системы. По своим размерам это крупное образование, его масса составляет 9-13 солнечных масс. Другим близким объектом, несущим угрозу нашему миру, является черная дыра Gygnus Х-1. С этим монстром нас разделяет расстояние в 6000 световых лет. Выявленные по соседству с нами черные дыры, являются частью бинарной системы, т.е. существуют в тесном соседстве со звездой, питающей ненасытный объект.

Заключение

Существование в космосе таких загадочных и таинственных объектов, какими являются черные дыры, безусловно, заставляет нас находиться на стороже. Однако все, что происходит с черными дырами, случается достаточно редко, если брать во внимание возраст Вселенной и огромные расстояния. В течение 4,5 млрд. лет Солнечная система пребывает в состоянии покоя, существуя по известным нам законам. За это время ничего подобного, ни искажения пространства, ни складки времени вблизи Солнечной системы не появилось. Вероятно, для этого нет подходящих условий. Та часть Млечного пути, в которой пребывает система звезды Солнце, является спокойным и стабильным участком космоса.

Ученые допускают мысль, что появление черных дыр не случайно. Такие объекты выполняют во Вселенной роль санитаров, уничтожающих излишек космических тел. Что же касается судьбы самих монстров, то их эволюция еще до конца не изучена. Существует версия, что черные дыры не вечны и на определенном этапе могут прекратить свое существование. Уже ни для кого не секрет, что такие объекты представляют собой мощнейшие источники энергии. Какая это энергия и в чем она измеряется – это другое дело.

Стараниями Стивена Хокинга науке была предъявлена теория о то, что черная дыра все-таки излучает энергию, теряя свою массу. В своих предположениях ученый руководствовался теорией относительности, где все процессы взаимосвязаны друг с другом. Ничего просто так не исчезает, не появившись в другом месте. Любая материя может трансформироваться в другую субстанцию, при этом один вид энергии переходит на другой энергетический уровень. Так, может быть, обстоит дело и с черными дырами, которые являются переходным порталом, из одного состояния в другое.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Исследователи из университетов Валенсии и Лиссабона решили посмотреть за рамки общей теории относительности, чтобы решить главную проблему с черными дырами - странными явлениями в их центре.

Электрически заряженные черные дыры

Черная дыра, рассматриваемая ими, является особым случаем, которого не существует в природе, так как она электрически заряженная и не вращается вокруг себя. Этот странный объект является не точкой бесконечной плотности, а червоточиной - своеобразным мостом в другое место во времени и пространстве.

Чтобы прийти к такому решению, ученые приравняли черную дыру к графену или кристаллу. Их геометрия может быть использована для воспроизведения пространства и времени.

Пространственно-временная аномалия

Подобно тому, как кристаллы несовершенны в своей микроструктуре, центральная область черной дыры может быть интерпретирована как аномалия в пространстве и времени, а это требует новых геометрических элементов, чтобы описать ее более точно. Ученые исследовали все возможные варианты, принимая во внимание те факты, которые они наблюдали в природе.

Описание особенностей черных дыр до сих пор является невероятно сложной задачей. Чтобы его обеспечить, необходимо сочетать теорию относительности и квантовую механику, а они довольно плохо работают вместе.

Теория ученых, естественно, решает несколько проблем в интерпретации электрически заряженных черных дыр. В первую очередь они решили проблему сингулярности, поскольку в центре черной дыры есть "дверь" - червоточина, через которую может продолжаться время и пространство.

Роль червоточины

В интерпретации ученых место в центре черной дыры заменяется червоточиной, размер которой прямо пропорционален ее электрическому заряду. Чем больше заряд, тем больше червоточина. Теоретически какой-то отважный исследователь мог бы прыгнуть в эту черную дыру, где он был бы затянут интенсивными приливными силами (этот процесс называют спагеттификацией), прошел бы сквозь червоточину и смог бы вернуться обратно во Вселенную.

Это открытие довольно любопытное. Хотя червоточины обычно прогнозируются в общей теории относительности, они требуют некой экзотической материи, чтобы оставаться стабильными. Вместо этого они проявляются в обычной материи и энергии.

Электрически заряженные черные дыры, как предполагается, не могут образоваться в природе, особенно если они приводят к своеобразным результатам, таким как образование стабильной чревоточины. Но, в конце концов, даже настоящие черные дыры когда-то считали просто причудливой теоретической идеей.

Существующие представления о черных дырах основываются на теоремах, доказываемых средствами дифференциальной геометрии многообразий. Изложение результатов теории имеется в книгах , и мы не будем повторять их здесь. Отсылая читателя за подробностями к монографиям и сборникам , а также оригинальным статьям и обзорам , ограничимся кратким перечислением основных положений, лежащих в основе современных представлений о черных дырах.

Наиболее общее семейство вакуумных решений уравнений Эйнштейна, описывающих стационарные асимптотически плоские пространства-времена с несингулярным горизонтом событий и регулярные всюду вне горизонта, обладает осевой симметрией и совпадает с двухпараметрическим семейством Керра . Два независимых параметра и а задают массу и момент вращения черной дыры. Теоремы, подкрепляющие это утверждение, были сформулированы в работах для невращающейся черной дыры и обобщены на метрику Керра в . Описывающие черные дыры решения невакуумных уравнений Эйнштейна, могут характеризоваться большим числом параметров. Так, в случае системы уравнений Эйнштейна - Максвелла, перечисленными свойствами обладает семейство решений Керра - Ньюмена , имеющее четыре параметра где электрический, магнитный заряды, единственность этого семейства доказана в . Имеются решения системы уравнений Эйнштейна - Янга - Миллса, описывающие черные дыры, несущие калибровочные (цветовые) заряды , а также системы Эйнштейна - Янга - Миллса - Хиггса со спонтанно нарушенной симметрией, описывающие точечные гравитирующие монополи и дайоны, скрытые под горизонтом событий . В расширенной супергравитации найдены решения, описывающие экстремально заряженные черные дыры, обладающие фермионной структурой. Существенно, что все перечисленные решения известны для полей нулевой массы, массивных собственных внешних полей черной дыры иметь не могут .

Поле Керра - Ньюмена

Откладывая обсуждение решений с магнитными и калибровочными зарядами до § 18, рассмотрим подробнее решение Керра - Ньюмена, описывающее вращающуюся электрически заряженную

черную дыру . В координатах Бойера - Линдквиста квадрат интервала пространства-времени имеет вид

где введены стандартные обозначения

4-потенциал (-форма) электромагнитного поля, определяемый соотношением

при не отличается от потенциала точечного заряда в пространстве Минковского. Дополнительное слагаемое, пропорциональное а, на пространственной бесконечности совпадает с потенциалом магнитного диполя величины Отличные от нуля компоненты контравариантного метрического тензора равны (координаты нумеруем 0, 1, 2, 3)

Для метрики Керра - Ньюмена имеется тридцать ненулевых символов Кристоффеля, из которых двадцать два попарно равны

где обозначено

Символы Кристоффеля являются четными функциями разности и не обращаются в нуль в экваториальной плоскости метрики Керра. Остальные компоненты связности нечетны относительно отражения в плоскости где они принимают нулевые значения. Это полезно иметь в виду при решении уравнений движения частиц.

Отличные от нуля компоненты тензора электромагнитного поля равны

что соответствует при суперпозиции кулонова поля и поля магнитного диполя.

Линейный элемент (1) не зависит от координат поэтому векторы

являются векторами Киллинга, порождающими сдвиги по времени и вращения вокруг оси симметрии. Векторы Киллинга и не ортогональны между собой

Симметрия электромагнитного поля относительно преобразований, задаваемых векторами Киллинга, выражается в равенстве нулю производных Ли от 4-потенциала (3) вдоль векторных полей (8),

Вектор времениподобен в области, ограниченной неравенством

и становится изотропным на поверхности эргосферы

представляющей собой эллипсоид вращения. Внутри эргосферы вектор пространственноподобен, однако существует линейная комбинация векторов Киллинга

представляющая собой времениподобный вектор Киллинга внутри эргосферы, если выполняется неравенство

Поверхность, на которой сливаются, является горизонтом событий, ее положение определяется большим корнем уравнения

откуда находим где

Величина играет роль угловой скорости вращения горизонта; в согласии с общей теоремой она не зависит от угла

Горизонт событий представляет собой изотропную гиперповерхность, пространственное сечение которой имеет топологию сферы. Площадь двумерной поверхности горизонта вычисляется по формуле

что приводит к результату

Согласно теореме Хокинга площадь поверхности горизонта событий черной дыры, погруженной в материальную среду, тензор энергии-импульса которой удовлетворяет условиям энергодоминантности, не может убывать. Масса и момент вращения дыры по отдельности могут уменьшаться, при этом, полностью потеряв вращательный момент, черная дыра окажется имеющей массу не менее величины

которая была названа «неуменьшаемой» массой черной дыры . Закон неубывания площади горизонта событий имеет общую природу с законом возрастания энтропии, его можно связать с потерей информации о состоянии вещества, оказавшегося под горизонтом событий. Если бы черная дыра не обладала некоторой

энтропией, то при поглощении, скажем, нагретого газа во внешнем пространстве происходило бы убывание энтропии. Привлечение квантовых соображений устраняет опасность противоречия со вторым началом термодинамики, ибо оказывается, что в квантовой гравитации энтропия черной дыры действительно пропорциональна площади поверхности горизонта событий (21) в единицах квадрата планковской длины

Это отвечает и более ранним расчетам эффекта рождения частиц в черных дырах в рамках полуклассической теории . Суммарная энтропия черной дыры и поглощаемого вещества при этом не убывает, поскольку при поглощении увеличивается масса (а также, возможно, уменьшается вращательный момент) черной дыры, вследствие чего возрастает площадь поверхности горизонта событий. Следует отметить, что знаменатель в (23) крайне мал, поэтому при макроскопическом изменении площади горизонта энтропия черной дыры изменяется на весьма большую величину.

На горизонте событий постоянна линейная комбинация компонент 4-потенциала, имеющая смысл электростатического потенциала горизонта для наблюдателя, вращающегося вместе с горизонтом

Постоянна также величина, получившая название «поверхностной гравитации» черной дыры, которая равна ускорению (в единицах координатного времени) частицы, удерживаемой в покое на горизонте, в инвариантном виде

где вектор определяется формулой (14). при (т. е. является изотропным вектором, лежащим на гиперповерхности

Другой изотропный вектор, нормированный условием Для метрики Керра - Ньюмена поверхностная гравитация горизонта равна

Мы переходим теперь к рассказу о том, как черная дыра может работать в качестве электрической машины (электромотора, динамомашины и т. д.).

Прежде всего мы должны познакомиться с удивительными свойствами границы черной дыры, которая, с

Рис. 5. Силовые линии электрического поля заряда вблизи черной дыры. Плюсами и минусами обозначены фиктивные поверхностные заряды на границе черной дыры

точки зрения внешнего наблюдателя, проявляется как «мембрана», наделенная определенными электрическими свойствами.

Чтобы понять, в чем здесь дело, рассмотрим электрическое поле заряда, расположенного вблизи невращающейся незаряженной черной дыры. Как мы уже говорили, трехмерное пространство в окрестности черной дыры искривлено, и поэтому силовые линии этого поля выглядят весьма необычно, как показано на рис. 5. Рисунок этот, разумеется, схематический, так как невозможно на плоском листке бумаги изобразить конфигурацию линий в искривленном пространстве. Мы видим, что часть силовых линий поля, искривляясь, уходит в пространство вдаль от черной дыры. Другие силовые линии упираются в черную дыру.

Если бы дело этим ограничивалось, то это означало бы, что черная дыра заряжена. Действительно, мы знаем, что закон Гаусса гласит: число силовых линий, пересекающих замкнутую поверхность, определяет полный заряд внутри нее. Но наша черная дыра в целом не заряжена; значит, если есть входящие в черную дыру силовые линии, то должны быть и линии, выходящие из нее. И в самом деле, мы видим на рисунке, что из черной дыры со стороны, противоположной заряду, выходят силовые линии электрического поля и уходят вдаль от черной дыры. Такая сложная конфигурация поля связана с сильной искривленностью пространства.

Силовые линии на рис. 5 выглядят так, как-будто поверхность черной дыры является электрически проводящей сферой и приближение к ней извне заряда вызывает поляризацию свободных зарядов в электрически проводящей сфере. Заряды, имеющие противоположный

Рис. 6. Фиктивный поверхностный ток на границе черной дыры. Черная дыра сплюснута из-за вращения

знак по сравнению с приближаемым, притягиваются им и собираются с одной стороны сферы. Заряды того же знака, что и приближаемый, отталкиваются и собираются с противоположной стороны (см. рис. 5). Такая аналогия позволяет условно считать, что на поверхности черной дыры имеются (фиктивные) заряды, на которых заканчиваются силовые линии внешнего электрического поля.

Рассмотрим подробнее процесс приближения электрического заряда к черной дыре. В ходе приближения заряда будет меняться распределение фиктивного поверхностного заряда черной дыры - заряды противоположного знака стягиваются к точке, расположенной прямо под приближающимся зарядом. Значит, можно считать, что на поверхности черной дыры течет (фиктивный) ток! Далее, можно связать силу этого тока с напряженностью электрического поля которое действует вдоль поверхности черной дыры при приближении заряда, как это видит далекий наблюдатель:

Это соотношение имеет вид хорошо знакомого закона Ома. Здесь мы обозначили через (фиктивное) поверхностное сопротивление черной дыры. Подробное рассмотрение показывает, что или в обычных единицах оно равно 377 Ом.

Итак, уже рассмотрение простейших электродинамических задач показывает, что поверхность черной дыры ведет себя как мембрана, наделенная определенными

Электрическими свойствами. Рассмотрение более сложных задач подтверждает эту точку зрения. Например, пусть в разные части поверхности черной дыры падают два потока зарядов противоположного знака (рис, 6), так что полный заряд черной дыры не меняется. Тогда можно считать, что от места падения положительных зарядов А к месту падения отрицательных зарядов В течет поверхностный электрический ток, как показано на рис. 6.

Мы должны еще раз напомнить читателю, что в действительности никаких поверхностных зарядов и токов (как и самой материальной поверхности) у черной дыры нет. Если какой-то наблюдатель падает в черную дыру, то он не встречает при пересечении горизонта никакой материальной поверхности, никаких зарядов, никаких токов. Введение этих фиктивных величин является просто наглядным методом представления поведения силовых линий электрического (и как мы увидим, так же и магнитного) поля вблизи границы черной дыры, с точки зрения наблюдателя, расположенного «дали от черной дыры. Такое представление очень удобно, наглядно и позволяет работать нашей интуиции, привыкшёй к анализу лабораторных экспериментов с проводящими сферами. Это позволяет нам, не обращаясь к сложным представлениям и расчетам, касающимся искривленного четырехмерного пространства-времени, с которым имеет дело общая теория относительности, сравнительно просто представить себе поведение черной дыры в тех или иных условиях.

В дальнейшем мы будем использовать описанное представление, не оговаривая каждый раз фиктивности понятий поверхностных зарядов и токов для черной дыры.

Обратимся теперь к рассмотрению того, как черная дыра может играть роль разных элементов электрической цепи и электрических машин. Это направление исследований сейчас активно разрабатывается американским физиком Кипом Торном и его коллегами. Разумеется, мы не будем останавливаться на технических деталях конструкций, а представим только общие схемы.

Анализ эволюции звезд привел астрономов к заключению, что как в нашей Галактике, так и вообще во Вселенной могут существовать черные дыры. В двух предыдущих главах мы рассмотрели ряд свойств самых простых черных дыр, которые описываются тем решением уравнения гравитационного поля, которое нашел Шварцшильд. Шварцшильдовская черная дыра характеризуется только массой; электрического заряда у нее нет. У нее отсутствует также магнитное поле и вращение. Все свойства шварцшильдовской черной дыры однозначно определяются заданием одной только массы той звезды, которая, умирая, превращается в черную дыру в ходе гравитационного коллапса.

Нет сомнений, что решение Шварцшильда - чересчур простой случай. Настоящая черная дыра должна по крайней мере вращаться. Однако сколь сложной может быть черная дыра на самом деле? Какие добавочные подробности следует учесть, а какими можно пренебречь при полном описании той черной дыры, которую можно обнаружить при наблюдениях неба?

Представим себе массивную звезду, у которой только что кончились все ресурсы ядерной энергии и у которой вот-вот начнется фаза катастрофического гравитационного коллапса. Можно думать, что такая звезда обладает очень сложной структурой и при ее всестороннем описании пришлось бы учитывать множество характеристик. В принципе астрофизик способен рассчитать химический состав всех слоев такой звезды, изменение температуры от ее центра до поверхности и получить все данные о состоянии вещества в недрах звезды (например, его плотности и давления) на всевозможных глубинах. Такие расчеты сложны, и их результаты существенно зависят от всей истории развития звезды. Внутреннее строение звезд, образовавшихся из разных облаков газа и в разное время, заведомо должно быть различным.

Однако, несмотря на все эти осложняющие обстоятельства, существует один бесспорный факт. Если масса умирающей звезды превышает примерно три массы Солнца, эта звезда непременно превратится в черную дыру в конце своего жизненного цикла. Не существует таких физических сил, которые могли бы предотвратить коллапс столь массивной звезды.

Чтобы лучше осознать смысл этого утверждения, вспомним, что черная дыра - это столь искривленная область пространства-времени, что из нее ничто не может вырваться, даже свет! Другими словами, из черной дыры невозможно получить никакую информацию. Как только вокруг умирающей массивной звезды возник горизонт событий, становится невозможным выяснить какие бы то ни было детали того, что происходит под этим горизонтом. Наша Вселенная навсегда теряет доступ к информации о событиях под горизонтом событий. Поэтому черную дыру иногда называют могилой для информации.

Хотя при коллапсе звезды с появлением черной дыры и теряется огромное количество информации, все же некоторая информация извне остается. Например, сильнейшее искривление пространства-времени вокруг черной дыры указывает, что здесь умерла звезда. С массой мертвой звезды прямо связаны такие конкретные свойства дыры, как поперечник фотонной сферы или горизонта событий (см. рис. 8.4 и 8.5). Хотя сама дыра в буквальном смысле черная, космонавт еще издалека обнаружит ее существование по гравитационному полю дыры. Измерив, насколько траектория его космического корабля отклонилась от прямолинейной, космонавт может точно вычислить полную массу черной дыры. Таким образом, масса черной дыры - это один из элементов информации, который не теряется при коллапсе.

Чтобы подкрепить это утверждение, рассмотрим пример двух одинаковых звезд, образующих при коллапсе черные дыры. На одну звезду поместим тонну камней, а на другую - слона весом в одну тонну. После образования черных дыр измерим напряженность гравитационного поля на больших расстояниях от них, скажем, по наблюдениям орбит их спутников или планет. Окажется, что напряженности обоих полей одинаковы. На очень больших расстояниях от черных дыр для вычисления полной массы каждой из них можно воспользоваться ньютоновской механикой и законами Кеплера. Так как полные суммы масс входящих в каждую из черных дыр составных частей одинаковы, идентичными окажутся и результаты. Но что еще существеннее, это невозможность указать, какая из этих дыр поглотила слона, а какая - камни. Вот эта информация пропала навсегда. Тонну чего бы вы ни бросили в черную дыру, результат всегда будет одним и тем же. Вы сможете определить, какую массу вещества поглотила дыра, но сведения о том, какой формы, какого цвета, какого химического состава было это вещество, утрачиваются навсегда.

Полную массу черной дыры всегда можно измерить, поскольку гравитационное поле дыры влияет на геометрию пространства и времени на огромных расстояниях от нее. Находящийся далеко от черной дыры физик может поставить эксперименты по измерению этого гравитационного поля, например запустив искусственные спутники и наблюдая их орбиты. Это важный источник информации, позволяющий физику с уверенностью говорить, что именно черная дыра не поглотила. В частности, все, что может измерить этот гипотетический исследователь вдали от черной дыры, не было поглощено полностью.

Начиная в середине XIX в. разработку теории электромагнетизма, Джеймс Клерк Максвелл располагал большими количествами информации об электрическом и магнитном полях. В частности, удивительным был тот факт, что электрические и магнитные силы убывают с расстоянием в точности так же, как и сила тяжести. И гравитационные, и электромагнитные силы - это силы большого радиуса действия. Их можно ощутить на очень большом удалении от их источников. Напротив, силы, связывающие воедино ядра атомов, - силы сильного и слабого взаимодействий - имеют короткий радиус действия. Ядерные силы дают о себе знать лишь в очень малой области, окружающей ядерные частицы.

Большой радиус действия электромагнитных сил означает, что физик, находясь далеко от черной дыры, может предпринять эксперименты для выяснения, заряжена эта дыра или нет. Если у черной дыры имеется электрический заряд (положительный или отрицательный) или магнитный заряд (соответствующий северному или юному магнитному полюсу), то находящийся вдалеке физик способен при помощи чувствительных приборов обнаружить существование этих зарядов. Таким образом, кроме информации о массе не теряется также информация о заряде черной дыры.

Существует третий (и последний) важный эффект, который может измерить удаленный физик. Как будет видно из следующей главы, любой вращающийся объект стремится вовлечь во вращение окружающее его пространство-время. Это явление называется или эффектом увлечения инерциальных систем. Наша Земля при вращении тоже увлекает за собой пространство и время, но в очень малой степени. Но для быстро вращающихся массивных объектов этот эффект становится заметнее, и если черная дыра образовалась из вращающейся звезды, то увлечение пространства-времени вблизи нее будет вполне ощутимым. Физик, находящийся в космическом корабле вдали от этой черной дыры, заметит, что он постепенно вовлекается во вращение вокруг дыры в ту же сторону, в которую вращается она сама. И чем ближе к вращающейся черной дыре окажется наш физик, тем сильнее будет это вовлечение.

Рассматривая любое вращающееся тело, физики часто говорят о его Моменте количества движения; это - величина, определяемая как массой тела, так и скоростью его вращения. Чем быстрее вращается тело, тем больше его момент количества движения. Помимо массы и заряда момент количества движения черной дыры является той ее характеристикой, информация о которой не теряется.

В конце 1960-х - начале 1970-х годов астрофизики-теоретики упорно трудились над проблемой: информация о каких свойствах черных дыр сохраняется, а о каких - теряется в них? Плодом их усилий оказалась знаменитая теорема о том, что "у черной дыры нет волос", впервые сформулированная Джонов Уилером из Принстонского университета (США). Мы уже виде ли, что характеристики черной дыры, которые могут быть измерены удаленным наблюдателем, - это ее масса, ее заряд и ее момент количества движения. Эти три основные характеристики сохраняются при образовании черной дыры и определяют геометрию пространства-времени вблизи нее. Работами Стивена Хоукинга, Вернера Израэля, Брандона Картера, Дэвида Робинсона и других исследователей было показано, что только эти характеристики сохраняются при образовании черных дыр. Иными словами, если задать массу, заряд и момент количества движения черной дыры, то о ней уже будет известно все - у черных дыр нет иных свойств, кроме массы, заряда и момента количества движения. Таким образом, черные дыры - это очень простые объекты; они гораздо проще, чем звезды, из которых черные дыры возникают. Для полного описания звезды требуется знание большого количества характеристик, таких, как химический состав, давление, плотность и температура на разных глубинах. Ничего подобного у черной дыры нет (рис. 10.1). Право же, у черной дыры совсем нет волос!

Поскольку черные дыры полностью описываются тремя параметрами (массой, зарядом и моментом количества движения), то должно существовать лишь несколько решений уравнений гравитационного поля Эйнштейна, причем каждое описывает свой "добропорядочный" тип черных дыр. Например, в предыдущих двух главах мы рассмотрели простейший тип черной дыры; эта дыра имеет лишь массу, и ее геометрия определяется решением Шварцшильда. Решение Шварцшильда было найдено в 1916 г., и хотя с тех пор было получено много других решений для черных дыр, обладающих только массой, все они оказались ему эквивалентными.

Невозможно представить себе, как могли бы черные дыры образоваться без вещества. Поэтому у любой черной дыры должна быть масса. Но вдобавок к массе у дыры могли бы существовать электрический заряд или вращение или и то, и другое вместе. Между 1916 и 1918 гг. Г. Райснер и Г. Нордстрём нашли решение уравнений поля, описывающее черную дыру с массой и зарядом. Следующий шаг на этом пути задержался до 1963 г., когда Рой П. Керр нашел решение для черной дыры, обладающей массой и моментом количества движения. Наконец, в 1965 г. Ньюмэн, Коч, Чиннапаред, Экстон, Пракаш и Торренс опубликовали решение для самого сложного типа черной дыры, а именно для дыры с массой, зарядом и моментом количества движения. Каждое из этих решений единственно - других возможных решений нет. Черная дыра характеризуется, самое большее, тремя параметрами - массой (обозначаемой через M ) зарядом (электрическим или магнитным, обозначается через Q ) и моментом количества движения (обозначается через а ). Все эти возможные решения сведены в табл. 10.1.

Таблица 10.1
Решения уравнений поля, описывающие черные дыры.

Типы черной дыры

Описание черной дыры

Название решения

Год получения

Только масса
(параметр М)

Самая "простая"
черная дыра. Обладает лишь массой.
Сферически симметрична.

Решение Шварцшильда

Масса и заряд
(параметры M и Q )

Заряженная черная дыры. Обладает массой и зарядом (электрическим или магнитным). Сферически симметрична

Решение Райснера-Нордстрёма

Масса и момент импульса (параметры M и a )

Вращающаяся черная дыра. Обладает массой и моментом количества движения. Осесимметрична

Решение Керра

Масса, заряд и момент импульса
(параметры M , Q и a )

Вращающаяся заряженная черная дыра, самая сложная из всех. Осесимметрична

Решение Керра-Ньюмена

Геометрия черной дыры решающим образом зависит от введения каждого дополнительного параметра (заряда, вращения или их вместе). Решения Райснера-Нордстрёма и Керра сильно отличаются как друг от друга, так и от решения Шварцшильда. Конечно, в пределе, когда заряд и момент количества движения обращаются в нуль (Q -> 0 и а -> 0), все три более сложных решения сводятся к решению Шварцшильда. И все же черные дыры, обладающие зарядом и/или моментом количества движения, имеют ряд замечательных свойств.

Во время первой мировой войны Г. Райснер и Г. Нордстрём открыли решение эйнштейновских уравнений гравитационного поля, полностью описывающее "заряженную" черную дыру. У такой черной дыры может быть электрический заряд (положительный или отрицательный) и/или магнитный заряд (соответствующий северному или южному магнитному полюсу). Если электрически заряженные тела - дело обычное, то магнитно заряженные - вовсе нет. Тела, у которых есть магнитное поле (например, обычный магнит, стрелка компаса, Земля), обладают обязательнољ иљ севернымљ иљ южнымиљ полюсамиљљ сразу.љљ Дољљ самого последнегољ времениљ большинствољ физиковљ считали,љ чтољљ магнитныељљ полюсыљљ всегдаљљ встречаютсяљљ толькољљ парами.љљ Однако в 1975 г. группа ученых из Беркли и Хьюстона объявила, что в ходе одного из экспериментов ими открыт . Если эти результаты подтвердятся, то окажется, что могут существовать и отдельные магнитные заряды, т.е. что северный магнитный полюс может существовать отдельнољ от южного, и обратно. Решение Райснера-Нордстрёма допускает возможность существования у черной дыры магнитного поля монополя. Независимо от того, как черная дыра приобрела свой заряд, все свойства этого заряда в решении Райснера-Нордстрёма объединяются в одну характеристику - число Q . Эта особенность аналогична тому факту, что решение Шварцшильда не зависит от того, каким образом черная дыра приобрела свою массу. Ее могли составить слоны, камни или звезды - конечный результатљ будет всегда одним и тем же. При этом геометрия пространства-времени в решении Райснера-Нордстрёма не зависит от природы заряда. Он может быть положительным, отрицательным, соответствовать северномуљ магнитномуљ полюсуљ илиљ южному - важно лишь его полное значение, которое можно записать как | Q |. Итак,љљ свойстваљљ чернойљљ дырыљљ Райснера-Нордстрёмаљљ зависят лишь от двух параметров - полной массы дыры М и ее полного зарядаљ |Q |љљ (инымиљљ словами,љљ отљ егољљ абсолютнойљљ величины). Размышляя о реальных черных дырах, которые могли бы реально существовать в нашей Вселённой, физики пришли к заключению, что решение Райснера-Нордстрёма оказывается не очень существенным, ибо электромагнитные силы намного больше сил тяготения. Например, электрическое поле электрона или протона в триллионы триллионов раз сильнее их гравитационного поля. Это значит, что если у черной дыры был бы достаточно большой заряд, то огромные силы электромагнитного происхождения быстро разбросали бы во все стороны газ и атомы, "плавающие" в космосе. В самое короткое время частицы, имеющие такой же знак заряда, как и черная дыра, испытали бы мощное отталкивание, а частицы с противоположным знаком заряда - столь же мощное притяжение к ней. Притягивая частицы с зарядом противоположного знака, черная дыра вскоре стала бы электрически нейтральной. Поэтому можно полагать, что реальные черные дыры обладают зарядом лишь малой величины. Для реальных черных дыр значение |Q | должно быть гораздо меньше, чем М. В самом деле, из расчетов следует, что черные дыры, которые могли бы реально существовать в космосе, должны иметь массу М по крайней мере в миллиард миллиардов раз большую, чем величина |Q |. Математически это выражается неравенством

Несмотря на эти, увы, прискорбные ограничения, налагаемые законами физики, весьма поучительно провести подробный анализ решения Райснера-Нордстрёма. Такой анализ подготовит нас к более основательному обсуждению решения Керра в следующей главе.

Чтобы проще подойти к пониманию особенностей решения Райснера-Нордстрёма, рассмотрим обычную черную дыру без заряда. Как следует из решения Шварцшильда, такая дыра состоит из сингулярности, окруженной горизонтом событий. Сингулярность расположена в центре дыры (при r =0), а горизонт событий - на расстоянии 1 шварцшильдовского радиуса (именно при r =2М ). Теперь представим себе, что мы придали этой черной дыре небольшой электрический заряд. Как только у дыры появился заряд, мы должны обратиться к решению Райснера-Нордстрёма для геометрии пространства-времени. В решении Райснера-Нордстрёма имеются два горизонта событий. Именно, с точки зрения удаленного наблюдателя, существуют два положения на разных расстояниях от сингулярности, где время останавливает свой бег. При самом ничтожном заряде горизонт событий, находившийся ранее на "высоте" 1 шварцшильдовского радиуса, сдвигается немножко ниже к сингулярности. Но еще более удивительно то, что сразу же вблизи сингулярности возникает второй горизонт событий. Таким образом сингулярность в заряженной черной дыре окружена двумя горизонтами событий - внешним и внутренним. Структуры незаряженной (шварцшильдовской) черной дыры и заряженной черной дыры Райснера-Нордстрёма (при М >>|Q |) сопоставлены на рис. 10.2.

Если мы будем увеличивать заряд черной дыры, то внешний горизонт событий станет сжиматься, а внутренний - расширяться. Наконец, когда заряд черной дыры достигнет значения, при котором выполняется равенство М=| Q |, оба горизонта сливаются друг с другом. Если увеличить заряд еще больше, то горизонт событий полностью исчезнет, и остается "голая" сингулярность. При М <|Q | горизонты событий отсутствуют, так что сингулярность открывается прямо во внешнюю Вселенную. Такая картина нарушает знаменитое "правило космической этики", предложенное Роджером Пенроузом. Это правило ("нельзя обнажать сингулярность!") будет подробнее обсуждаться ниже. Последовательность схем на рис. 10.3 иллюстрирует расположение горизонтов событий у черных дыр, имеющих одну и ту же массу, но разные значения заряда.

Рис. 10.3 иллюстрирует положение горизонтов событий относительно сингулярности черных дыр в пространстве, но еще полезнее проанализировать диаграммы пространства-времени для заряженных черных дыр. Чтобы построить такие диаграммы - графики зависимости времени от расстояния, мы начнем с "прямолинейного" подхода, использованного в начале предыдущей главы (см. рис. 9.3). Измеряемое наружу от сингулярности расстояние откладывается по горизонтали, а время, как обычно, - по вертикали. На такой диаграмме левая часть графика всегда ограничивается сингулярностью, описываемой линией, идущей вертикально от удаленного прошлого к далекому будущему. Мировые линии горизонтов событий также представляют собой вертикали и отделяют внешнюю Вселенную от внутренних областей черной дыры.

На рис. 10.4 показаны диаграммы пространства-времени для нескольких черных дыр, имеющих одинаковые массы, но разные заряды. Вверху для сравнения приведена диаграмма для шварцшильдовской черной дыры (вспомним, что решение Шварцшильда - это то же, что решение Райснера-Нордстрёма при | Q | =0). Если этой дыре добавить совсем небольшой заряд, то второй

(внутренний) горизонт будет расположен непосредственно вблизи сингулярности. Для черной дыры с зарядом умеренной величины (М >|Q |) внутренний горизонт расположен дальше от сингулярности, а внешний уменьшил свою высоту над сингулярностью. При очень большом заряде (М =|Q |; в этом случае говорят о предельном решении Райснера-Нордстрёма) оба горизонта событий сливаются воедино. Наконец, когда заряд исключительно велик (М <|Q |), горизонты событий просто исчезают. Как видно из рис. 10.5, при отсутствии горизонтов сингулярность открывается прямо во внешнюю Вселенную. Удаленный наблюдатель может видеть эту сингулярность, а космонавт может влететь прямо в область сколь угодно сильно искривленного пространства-времени, не пересекая никаких горизонтов событий. Подробный расчет показывает, что непосредственно рядом с сингулярностью тяготение начинает действовать как отталкивание. Хотя черная дыра и притягивает к себе космонавта, пока тот находится достаточно далеко от нее, но стоит ему приблизиться к сингулярности на очень малое расстояние, и он подвергнется отталкиванию. Полной противоположностью случая решения Шварцшильда является область пространства непосредственно около сингулярности Райснера-Нордстрёма - это царство антигравитации.

Неожиданности решения Райснера-Нордстрёма не исчерпываются двумя горизонтами событий и гравитационным отталкиванием вблизи сингулярности. Вспоминая сделанный выше подробный анализ решения Шварцшильда, можно думать, что диаграммы типа изображенных на рис. 10.4 описывают далеко не все стороны картины. Так, в геометрии Шварцшильда мы столкнулись с большими трудностями, вызванными наложением друг на друга в упрощенной диаграмме разных областей пространства-времени (см. рис. 9.9). Такие же трудности ждут нас и в диаграммах типа рис. 10.4, так что пора перейти к их выявлению и преодолению.

Легче понять глобальную структуру пространства-времени, применяя следующие элементарные правила. Выше мы разобрались, в чем состоит глобальная структура шварцшильдовской черной дыры. Соответствующая картина, именуемая , изображена на рис. 9.18 . Она может быть названа и диаграммой Пенроуза для частного случая черной дыры Райснера-Нордстрёма, когда заряд отсутствует (|Q | =0). Более того, если мы лишим дыру Райснера-Нордстрёма заряда (т.е. перейдем к пределу |Q | ->0), то наша диаграмма (какой бы она ни была) обязательно сведется в пределе к диаграмме Пенроуза для решения Шварцшильда. Отсюда следует наше первое правило: должна существовать другая Вселенная, противоположная нашей, достижение которой возможно лишь по запрещенным пространственноподобным линиям. и ), рассмотренных в предыдущей главе. Кроме того, каждая из этих внешних Вселенных должна изображаться в виде треугольника, так как метод конформного отображения Пенроуза работает в данном случае как бригада маленьких бульдозеров (см. рис. 9.14 или 9.17), "сгребающих" все пространство-время в один компактный треугольник. Поэтому нашим вторым правилом будет следующее: любая внешняя Вселенная должна представляться в виде треугольника, обладающего пятью типами бесконечностей. Такая внешняя Вселенная может быть ориентирована либо направо (как на рис. 10.6), либо налево.

Чтобы прийти к третьему правилу, напомним, что на диаграмме Пенроуза (см. рис. 9.18) горизонт событий шварцшильдовской черной дыры имел наклон 45њ. Итак, третье правило: любой горизонт событий должен быть светоподобен, и поэтому всегда имеет наклон 45њ.

Для вывода четвертого (и последнего) правила вспомним, что при переходе через горизонт событий пространство и время менялись ролями в случае шварцшильдовской черной дыры. Из подробного анализа пространственноподобных и временноподобных направлений для заряженной черной дыры следует, что и здесь получится та же картина. Отсюда четвертое правило: пространство и время меняются ролями всякий раз, когда пересекается горизонт событий.

На рис. 10.7 только что сформулированное четвертое правило проиллюстрировано для случая черной дыры с малым или умеренным зарядом (М>| Q | ). Вдали от такой заряженной черной дыры пространственноподобное направление параллельно пространственной оси, а временноподобное - параллельно временной оси. Пройдя под внешний горизонт событий, мы обнаружим смену ролей этих двух направлений - пространственноподобное направление теперь стало параллельно оси времени, а временноподобное - параллельно пространственной оси. Однако, продолжая Движение к центру и опустившись под внутренний горизонт событий, мы становимся свидетелями второй смены ролей. Вблизи сингулярности ориентация пространственноподобного и временнеподобного направлений становится такой же, какой она была вдали от черной дыры.

Двукратная смена ролей пространственноподобного и временноподобного направлений имеет решающее значение для природы сингулярности заряженной черной дыры. В случае шварцшильдовской черной дыры, у которой нет заряда, пространство и время меняются ролями всего один раз. Внутри единственного горизонта событий линии постоянного расстояния направлены в пространственноподобном (горизонтальном) направлении. Значит, линия, изображающая расположение сингулярности (r = 0), должна быть горизонтальной, т.е. направлена пространственноподобно. Однако, когда имеются два горизонта событий, линии постоянного расстояния вблизи сингулярности имеют временноподобное (вертикальное) направление. Поэтому линия, описывающая положение сингулярности заряженной дыры (r =0), должна быть вертикальной, и ее следует ориентировать временноподобно. Поэтому так мы приходим к заключению первостепенной важности: сингулярность заряженной черной дыры должна быть временноподобной!

Теперь можно, воспользовавшись приведенными выше правилами, построить диаграмму Пенроуза для решения Райснера-Нордстрёма. Начнем с того, что представим себе космонавта, находящегося в нашей Вселенной (скажем, просто на Земле). Он садится в свой космический корабль, включает двигатели и направляется к заряженной черной дыре. Как видно из рис. 10.8, наша Вселенная имеет на диаграмме Пенроуза вид треугольника с пятью бесконечностями. Любой допустимый путь космонавта должен быть ориентирован на диаграмме всегда под углом менее 45њ к вертикали, так как лететь со сверхсветовой скоростью он не может.

На рис. 10.8 такие допустимые мировые линии изображены пунктиром. С приближением космонавта к заряженной черной дыре он опускается под внешний горизонт событий (который должен иметь наклон точно 45њ). Пройдя этот горизонт, космонавт уже никогда не сможет вернуться в нашу Вселенную. Однако он может опуститься дальше под внутренний горизонт событий, также имеющий наклон 45њ. Под этим внутренним горизонтом космонавт может по глупости столкнуться с сингулярностью, где ему придется подвергнуться действию гравитационного отталкивания и где пространство-время искривлено бесконечно сильно. Заметим, однако, что трагический исход полета отнюдь не неизбежен ! Так как сингулярность заряженной черной дыры временноподобна, она должна на диаграмме Пенроуза изображаться вертикальной линией. Космонавт может избежать гибели, попросту направив свой космический корабль от сингулярности по разрешенному временноподобному пути, как это изображено на рис. 10.8. Спасительная траектория уводит его от сингулярности, и он снова пересекает внутренний горизонт событий, также имеющий наклон 45њ. Продолжая полет, космонавт выходит за внешний горизонт событий (и он имеет наклон 45њ) и попадает во внешнюю Вселенную. Поскольку подобное путешествие, очевидно, требует времени, то последовательность событий вдоль мировой линии должна идти от прошлого к будущему. Поэтому космонавт не может
gastroguru © 2017