Прибор для обнаружения свч излучения. Детектор излучения

Излучение сверхвысоких частот (СВЧ) или так называемое микроволновое излучение неблагоприятно воздействует на организм человека. Чтобы обезопасить себя и своих близких от последствий этого вида излучения применяют детекторы различной сложности, определяющие утечку излучения микроволновых печей, сотовых телефонов и других устройств. Как выявить опасное устройство об этом и поговорим в этой статье.

Фото. 1. Внешний вид бытовой микроволновой печи Panasonic

Не все то, что написано в руководстве по эксплуатации бытовых приборов (особенно это касается переводных руководств) является правдой. Чаще всего — это так называемая полуправда: одной стороны все вроде бы и верно, но часто оказывается, что-то недосказано. То же относится к явлениям и процессам, которые могут быть опасны для жизни и здоровья человека или его вещей.

Не так давно минуло время (а может быть, еще и не минуло), когда портативные бытовые дозиметры пользовались огромной популярностью у населения. Нет, конечно, не каждая семья имела в квартире, загородном доме ядерный реактор, но продукты и те вещи, что покупали с рук и на рынках, явно требовали контроля. Нет-нет, да и зашкаливал дозиметр... По той же причине сегодня покупают приборы для замера уровня пестицидов в различных плодах природы.

Одним из источников неблагоприятного воздействия на организм человека является излучение сверхвысоких частот (СВЧ) или так называемое микроволновое излучение. Ярким примером электронного устройства с генератором СВЧ излучения (магнетроном) является микроволновая печь (см. рис. 1).

Кроме потенциально опасного для человека и животных СВЧ излучения, микроволновая печь (далее — печь) создает сильное электромагнитное излучение, которое оказывает отрицательное воздействие на некоторые предметы и вещи — например, наручные часы с электромагнитной системой (и другие).

Фото. 2. СВЧ печь Panasonic со снятой крышкой корпуса

Как правило, новая печь работает надежно и не является источником вредоносного излучения вне своего корпуса, но все же лучше не класть на нее часы, сотовые телефоны и другие предметы.

Печь, бывшая в ремонте вне сервисного центра, в которой заменялся основной элемент генератора — магнетрон, с поврежденным корпусом или имеющая повреждения рабочей камеры, волновода и другие недостатки, потенциально опасна для здоровья.

Чтобы выявлять такие вредоносные печи и другие устройства (например, полубитый мобильник), используют индикаторы СВЧ-излучения. Простейшая схема такого индикатора представлена на фото 3.

Фото 3. Простая схема индикатора СВЧ-излучения, которую можно собрать самостоятельно

Примечание к фото 3. Петля — это отрезок медного провода диаметром 1…1,5 мм. Для этой цели вполне подходит проволока для точечной электрической сварки. СВЧ-диод — диод типа 2А202А, ДК-В8 или аналогичный. Тестер — миллиамперметр с током полного отклонения стрелки 100 мкА. В нашем случае лучше применить стрелочный прибор, например, Ц4342, Ц4317 или аналогичный. Неполярный конденсатор — любой, например, типа МБМ.

Узел соединения магнетрона с источником питания содержит переходные конденсаторы, которые (совместно в дросселями) образуют фильтр для защиты от проникновения СВЧ-излучения из магнетрона и волновода во вне.

Принцип проверки микроволновой печи несложен — «петлю» с микроамперметром медленно проводят рядом с корпусом микроволновой печи (на расстоянии от него 1-6 см). Медленная скорость «сканирования» нужна для того, чтобы зафиксировать микроволновое излучение в наиболее опасной зоне печи.

Генератор СВЧ-излучения включается в печи во время приготовления пищи не постоянно, а периодически. Это заметно и визуально: чуть меркнет лампа подсветки внутри рабочей камеры печи, и чуть более шумит печь при включении генератора.

Что мы не знаем о магнетроне?

Важнейший компонент СВЧ печи — магнетрон — это электровакуумный диод, предназначен для генерирования колебаний СВЧ. При работе магнетрона выделяется мощность, которая переходит в тепло, поэтому внутри рабочей камеры создается тепловое электромагнитное поле. Генерируемая магнетроном мощность поступает по волноводу — устройству, передающему энергию в рабочую зону печи, представляющую собой прямоугольную камеру (рабочая камера).

Фото 4. Крупный план магнетрона

Рядом с волноводным выходом расположен вращающийся столик, на который помещают обрабатываемый продукт. Все это находится внутри корпуса печи.

Важно, чтобы излучение (опасное для жизни при непосредственном воздействии на человека) не выходило за пределы корпуса печи. Корпус печи представляет собой замкнутую металлическую конструкцию, которая одновременно является экраном для излучения СВЧ.

Для бытовой термообработки в диапазоне волн СВЧ используются электромагнитные колебания на частотах 2375, 2450 МГц — у очень старых моделей, и до 10-12 ГГц в современных печах. В табл. 1 приведены сведения о глубине проникновения электромагнитной волны (с потерями энергии) в некоторые из диэлектриков.

Таблица 1. Глубина проникновения электромагнитной волны в диэлектрике с потерями при температуре 20-25 ºС

Современные магнетроны (магнетроны с безнакальным автокатодом типа МИ и аналогичные) обеспечивают «мгновенную» (с первого импульса) готовность к работе на полную мощность без затраты энергии на разогрев катода, чем существенно повышается надежность работы магнетрона.

Применение безнакального магнетрона позволило упростить электрическую схему печи, исключив десятки радиокомпонентов. В связи с этим нет необходимости в трансформаторе, управляющем устройстве и регуляторе напряжения в цепи накала магнетрона (раз нет и самого накала), задающем и блокинг-генераторах, удалось уменьшить массу и габариты печи, снизить стоимость изделия, одновременно повысив его эксплуатационную надежность.

Возможные неисправности магнетронов:

    анод магнетрона выполнен в виде медного цилиндра. Рабочее напряжение анода магнетрона (в зависимости от типа) колеблется в диапазоне 3800 — 4000 В. Мощность от 500 до 1200 Вт. Магнетрон крепится непосредственно на волноводе (рис. 3). В печах, где производитель располагает магнетрон с коротким волноводом, можно наблюдать такой дефект, как пробой слюдяной прокладки. Происходит это в результате загрязнения прокладки;

    при пробое прокладки колпачок магнетрона расплавляется (это случается с магнетронами типа 2М-218Н(R), ОМ7S(20), 2M213-09F, 2М-219Н(В), 2M226-09F и конструктивно аналогичными). Его (колпачок) можно заменить аналогичным колпачком с другого магнетрона;

    как любая лампа он может терять свою эмиссию, в результате чего значительно сокращается мощность энергии и увеличивается время приготовления. Обычно средний срок службы магнетрона (например, 2М213-хх) имеет предел 15 000 ч. Его КПД при этом составляет 75-80%, что является эффективным показателем для магнетронов генераторов СВЧ колебаний;

    пробой переходных конденсаторов можно обнаружить с помощью тестера в режиме измерения сопротивления. Пробой происходит на корпус магнетрона. Устраняется неисправность путем замены всего узла.

Отдельно магнетрон можно проверить, только сформировав все необходимые для его работы напряжения.

Фото 5. Источник питания СВЧ-печи

В микроволновой печи вторым по значимости элементом после магнетрона является источник питания (Фото 5). От его надежности зависит вся безопасная работа печи.

Замечательным инструментом при ремонте и диагностике СВЧ печи, в частности при диагностике магнетронов, являются токовые клещи, например, ECT-650 «Escort».

Они позволяют измерить ток, потребляемый печью, ток высоковольтной обмотки трансформатора. Номинальный ток, потребляемый печью, 4,5 — 6 А, ток высоковольтной обмотки трансформатора 0,3 — 0,5 А.

Большие отклонения от указанных значений (особенно в сторону увеличения отдельных параметров) говорят о локальной неисправности магнетрона.

Вместе с тем занижение всех параметров может объясняться плохими контактами, начиная от сетевой розетки и заканчивая коммутационными элементами (реле, электрические микровыключатели, контакты).

Для того, чтобы удостовериться в исправности магнетрона и достаточном уровне СВЧ-излучения внутри корпуса печи, его проверяют детектором.

Детекторы СВЧ излучения

На фото 6 представлен промышленный детектор СВЧ-излучения, который можно приобрести в магазинах электротоваров.

Рис. 6. Детектор СВЧ излучения

Это устройство фиксирует нее только СВЧ импульсы, которые можно проверить, поднеся прибор непосредственно во время работы печи к ее стенкам. Оно также окажется полезным для поиска «жучков» работающих на сверхвысокой частоте, поиске сотовых телефонов и проверки их работы. Стоит такой промышленный тестер менее 500 руб.

Питается прибор от батареи типа 6F22 «Крона» с напряжением 9 В. Ток потребления устройства в режиме ожидания — единицы мкА, поэтому элемент питания служит долго. В верхней части корпуса размещен индикаторный светодиод.

Он загорится, когда в области детектора (показан на корпусе стрелочкой) будет присутствовать СВЧ-излучение. Устройство не измеряет мощность излучения, но фиксирует его наличие.

С помощью такого детектора можно проверять не только рабочие камеры микроволновых печей и наличие вне их корпуса вредоносного излучения, но и наличие излучения сотовых телефонов. Сделать это просто.

Надо поднести детектор к возможного источнику излучения, например к корпусу мобильника на расстояние 2-10 см. При активности сотового телефона: при входящем и исходящем вызове, несанкционированном «общении» сотового телефона с базовой станцией, при регистрации сотового телефона в сети (например, при включении сотового телефона) и в других случаях — индикатор детектора покажет наличие СВЧ излучения.

Этот наглядный урок не мешало бы использовать на уроках физики в школах, для того, чтобы люди понимали, насколько вредно или полезно постоянно носить сотовый телефон близко к собственному телу (на груди, на поясе, в кармане, особенно нагрудном).

Результаты вредоносного СВЧ излучения (особенно при постоянном воздействии) наверное, лучше прокомментируют ученые и медицинские работники. От себя добавлю лишь, что СВЧ излучение подобно атому, который может быть мирным и не очень. Это четко надо понимать, эксплуатируя как будто бы безобидную мобилу или микроволновую печь.

В качестве детектора излучения СВЧ можно применить и другой промышленный прибор, предназначенный для автомобилистов, который называется «индикатор искры». В продаже имеются такие устройства, одно из которых представлено на рис. 7.

Рис. 7. Фото (внешний вид) детектора СВЧ излучения индикатора искры

Прибор предназначен для проверки высоковольтных цепей зажигания автомобилей. Внутри корпуса установлен датчик (такая же петля как на схеме рис. 5, только в миниатюре), реагирующий, как показала практика, не только на высокое импульсное напряжение в зажигании автомобиля, но и на СВЧ излучения микроволновой печи и сотового телефона.

Индикатором СВЧ излучения также служит светодиод красного свечения, установленный у стрелки «высокое напряжение».

На выносных проводах индикатор питается от любого источника питания с постоянным напряжением 8-15 В, в том числе от батареи типа «Крона» или автомобильного аккумулятора.

Особенность устройства в том, что оно имеет регулировку чувствительности (ручка регулировки вынесена на верхнюю часть корпуса). Стоит такой прибор в пределах 300 руб. Имея его, уже можно не заботиться о других детекторах СВЧ излучения.

Меры безопасной работы при ремонте и обслуживании СВЧ печей

Несоблюдение данных правил может привести к поражению электрическим током, травмам и выходу из строя достаточно дорогих компонентов СВЧ установки. Самым опасным (из всех доступных в бытовых условиях) для человека является переменный ток частотой 50 Гц, а так же СВЧ-излучение.

СВЧ печь, подключенную к сети 220 В (под напряжением) можно ремонтировать и проверять только в тех случаях, когда выполнение работ в отключенном от сети аппарате невозможно (настройка, регулировка, измерение режимов, поиск плохих контактов в виде «холодной пайки» и в аналогичных случаях).

При этом необходимо соблюдать осторожность во избежание воздействия опасного напряжения. Следует остерегаться ожога от нагревающихся элементов.

Во всех случаях работы с включенной печью необходимо пользоваться инструментом с изолированными ручками. Работать следует одной рукой, в одежде с длинными рукавами или в нарукавниках.

Другой рукой в это время нельзя прикасаться к корпусу печи и другим заземленным предметам (трубам центрального отопления, водопровода). Провода измерительных приборов должны оканчиваться щупами и иметь хорошую изоляцию.

Это общие правила электробезопасности.

Внимание, опасно:

    пайка элементов печи, находящейся под напряжением;

    ремонтировать печь, включенную в электрическую сеть, в помещении сыром, либо имеющим цементный или иной токопроводящий пол;

    находится возле установки лицам, не ремонтирующим его;

    как и любой источник СВЧ излучения, излучение магнетрона при прямом воздействии может вызвать повреждение глаз или ожоги кожи. СВЧ излучение человеческий глаз не видит;

    при замене магнетрона будьте особенно внимательны. Не оставляйте монтажного мусора в волноводе;

    перед заменой всегда разрежайте конденсатор в цепи питания магнетрона отрезком изолированного провода (шунтирующий резистор иногда выходит из строя).

Кроме того, при эксплуатации печи не допускается:

    включать печь при открытой дверце либо сетки (она и сама не включится, так как на то есть защита, но этот пункт актуален для тех, кто пренебрегает этой защитой, отключая ее);

    нельзя делать отверстия в корпусе (домохозяйки, мечтающие повесить печь на стену, словно хлебницу, да оставят такие мысли).

Практически каждый начинающий радиолюбитель пробовал собрать радиожучок. На нашем сайте есть немало схем, многие из которых содержат всего один транзистор, катушку и обвязку - несколько резисторов и конденсаторов. Но даже столь простую схему будет нелегко правильно настроить не имея специальных приборов. Про волномер и ВЧ частотомер говорить не будем - как правило начинающие радиолюбители ещё не обзавелись такими сложными и дорогими приборами, но собрать простой детектор ВЧ не просто надо, а обязательно надо.

Ниже показаны детали, для него.


Данный детектор позволяет определить, идёт ли излучение высокой частоты, то есть генерирует ли передатчик хоть какой нибудь сигнал. Конечно он не покажет частоту, но для этого можно воспользоваться обычным ФМ радиоприёмником.


Конструкция ВЧ детектора может быть любой: навесной монтаж или небольшая пластмассовая коробочка, куда поместится стрелочный индикатор и другие детали, а антенну (кусочек толстого провода 5-10 см) выведем наружу. Конденсаторы могут применяться любых типов, допустимо отклонения номиналов деталей в очень широких пределах.


Детали детектора радиочастотных излучений:

- Резистор 1-5 килоом;
- Конденсатор 0,01-0,1 микрофарад;
- Конденсатор 30-100 пикофарад;
- Диод Д9, КД503 или ГД504.
- Стрелочный микроамперметр на 50-100 микроампер.


Сам индикатор может быть любым, даже если он на большой ток или напряжение (вольтметр), просто открываем корпус и убираем шунт внутри прибора, превращая его в микроамперметр.


Если вы не знаете характеристик индикатора, то чтоб узнать на какой он ток, просто подключите к омметру сначала на заведомо известный ток (где указана маркировка) и запомните процент отклонения шкалы.


А потом подключите неизвестный стрелочный прибор и по отклонению стрелки станет понятно, на какой ток он расчитан. Если индикатор на 50 мкА дал полное отклонение, а неизвестный прибор при том же напряжении - половину, значит он на 100 мкА.


Для наглядности собрал детектор ВЧ сигнала навесным монтажом и провёл измерения излучения от свежесобранного ФМ радиомикрофона.


При питании схемы передатчика от 2В (сильно севшая крона), стрелка детектора отклоняется на 10% шкалы. А при свежей батарейке 9В - почти половину.

Изобретение относится к радиотехнике СВЧ и может быть использовано в устройствах детектирования СВЧ-сигналов. Техническим результатом является повышение чувствительности. Технический результат достигается за счет выполнения в отрезке 3 линии передачи выреза 6 длиной /2, где - средняя рабочая длина волны в линии, и размещения в вырезе 6 проводящего СВЧ-элемента 7, связанного с отрезком 3 посредством встречно включенных СВЧ-диодов 8 и 9 и конденсатора 11. 2 з.п. ф-лы, 2 ил.

Рисунки к патенту РФ 2350973

Изобретение относится к радиотехнике сверхвысоких частот (СВЧ) и может быть использовано для детектирования СВЧ-сигналов.

Известен детектор СВЧ, реализованный в коаксиальном исполнении (патент США №3693103, НКИ 329/162, 1972 г.). Недостатком указанного детектора СВЧ является невысокая чувствительность.

В качестве прототипа заявляемого технического решения выбрана амплитудная детекторная секция СВЧ, являющаяся по своему функциональному назначению детектором СВЧ-сигнала (авторское свидетельство СССР №1483389, кл. G01R 21/12, 1989 г.). Детектор СВЧ состоит из отрезка линии передачи, в котором выполнен продольный вырез длиной /4, где - средняя рабочая длина волны в линии. Ширина выреза не превышает половины ширины отрезка линии передачи. В вырезе установлены последовательно соединенные СВЧ-диод и конденсатор. При подаче на входной СВЧ-соединитель падающей СВЧ-мощности и подсоединения к выходному СВЧ-соединителю согласованной СВЧ-нагрузки продетектированное напряжение выводится из точки соединения СВЧ-диода с конденсатором через низкочастотный фильтр на низкочастотный соединитель.

Недостатком указанного детектора СВЧ является невысокая чувствительность, обусловленная тем, что СВЧ-диод работает только в течение половины периода падающей СВЧ-мощности из-за его расположения в вырезе отрезка линии передачи длиной /4.

Задача, решаемая изобретением, - повышение чувствительности.

Указанная задача решается тем, что в детекторе СВЧ, содержащем корпус, отрезок линии передачи, в котором выполнен продольный вырез, ширина которого не превышает половины ширины отрезка линии передачи, входной и выходной СВЧ-соединители, низкочастотный фильтр, подсоединенный к низкочастотному соединителю, и конденсатор, длина продольного выреза выбрана равной половине средней рабочей длины волны в линии; в упомянутом вырезе размещен проводящий СВЧ-элемент, концы которого соединены с отрезком линии передачи посредством встречно включенных СВЧ-диодов, при этом проводящий СВЧ-элемент в точке, равноотстоящей от его концов, соединен с конденсатором, подсоединенным к отрезку линии передачи, и с низкочастотным фильтром.

Проводящий СВЧ-элемент может быть выполнен в виде отрезка полосковой или коаксиальной линии передачи.

Изобретение поясняется чертежами. На фиг.1 показана конструкция детектора СВЧ, на фиг.2 приведена его схема электрическая принципиальная.

Детектор СВЧ состоит из согласованных входного и выходного СВЧ-соединителей 1 и 2 соответственно и отрезка 3 линии передачи, выполненной на СВЧ-диэлектрической пластине 4, которая закреплена в корпусе 5. В отрезке 3 выполнен продольный вырез 6 длиной /2, где - средняя рабочая длина волны в линии. Ширина выреза 6 рассчитывается по наилучшему КСВН (коэффициенту стоячей волны нагрузки) и не превышает половины ширины отрезка 3. В вырезе 6 с зазором относительно отрезка 3 размещен проводящий СВЧ-элемент 7, концы которого соединены с отрезком 3 посредством встречно включенных СВЧ-диодов 8 и 9. Элемент 7 может быть выполнен в виде отрезка полосковой или коаксиальной линии передачи.

В точке 10, равноотстоящей от концов проводящего СВЧ-элемента 7 (на расстоянии /4 от них), элемент 7 подключен к конденсатору 11, связанному с отрезком линии передачи 3. К точке 10 подключен одним концом низкочастотный фильтр 12, другой конец которого подсоединен к низкочастотному (НЧ) соединителю 13. В режиме детектирования падающей СВЧ-мощности к выходному СВЧ-соединителю 2 подключается согласованная СВЧ-нагрузка 14. Внешние проводники соединителей 1, 2 и 13 соединены с корпусом 5.

Заявляемый детектор СВЧ работает следующим образом. Сигнал СВЧ подается на входной СВЧ-соединитель 1, первую половину периода СВЧ-волны детектируется СВЧ-диодом 8 и через конденсатор 11 поступает в согласованную СВЧ-нагрузку 14. Во второй половине периода СВЧ-волны сигнал СВЧ проходит через конденсатор 11, детектируется СВЧ-диодом 9 и поступает в согласованную нагрузку 14. Постоянный ток смещения СВЧ-диодов 8 и 9 протекает по цепи: корпус 5, согласованная СВЧ-нагрузка 14, выходной СВЧ-соединитель 2, СВЧ-диоды 8 и 9, точка 10 соединения конденсатора 11 с проводящим СВЧ-элементом 7, фильтр 12, низкочастотный соединитель 13, входное сопротивление внешней низкочастотной нагрузки, корпус 5.

Высокая чувствительность по напряжению и, соответственно, высокий уровень выходного продетектированного низкочастотного напряжения обеспечиваются в заявляемом детекторе СВЧ за счет выполнении в отрезке линии передачи 3 выреза 6 длиной /2 и размещения в вырезе 6 проводящего СВЧ-элемента 7, связанного с отрезком 3 линии передачи посредством встречно включенных СВЧ-диодов 8 и 9 и конденсатора 11, что позволяет детектировать СВЧ-сигнал в оба полупериода падающей СВЧ-волны. В диапазоне частот от 1,5 ГГц до 10 ГГц чувствительность по напряжению составляет не менее 3 В/мВт, а в диапазоне частот от 4 ГГц до 8 ГГц превышает 15 В/мВт.

Детектор СВЧ может быть использован в качестве смесителя СВЧ, при этом напряжения входного сигнала и гетеродина подаются на входной и выходной СВЧ-соединители соответственно, а сигнал промежуточной частоты снимается с низкочастотного соединителя.

Детектор СВЧ может быть реализован в полосковом и коаксиальном вариантах при выполнении проводящего СВЧ-элемента в виде отрезка полосковой или коаксиальной линии передачи соответственно.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Детектор СВЧ, содержащий корпус, отрезок линии передачи, в котором выполнен продольный вырез, ширина которого не превышает половины ширины отрезка линии передачи, входной и выходной СВЧ-соединители, низкочастотный фильтр, подсоединенный к низкочастотному соединителю, и конденсатор, отличающийся тем, что длина продольного выреза выбрана равной половине средней рабочей длины волны в линии; в упомянутом вырезе размещен проводящий СВЧ-элемент, концы которого соединены с отрезком линии передачи посредством встречно включенных СВЧ-диодов, при этом проводящий СВЧ-элемент в точке, равноотстоящей от его концов, соединен с конденсатором, подсоединенным к отрезку линии передачи, и с низкочастотным фильтром.

2. Детектор СВЧ по п.1, отличающийся тем, что проводящий СВЧ-элемент выполнен в виде отрезка полосковой линии передачи.

3. Детектор СВЧ по п.1, отличающийся тем, что проводящий СВЧ-элемент выполнен в виде отрезка коаксиальной линии передачи.

Этот простой детектор я не собирался рисовать. Но масса писем с вопросами по настройке моих конвертеров MMDS показала, что даже начинающие радиолюбители пытаются повторить их. Не советовал бы браться за СВЧ устройства новичкам в радиотехнике. Опытные радиолюбители всегда имеют под рукой подобные самодельные “фишечки” вроде этого детектора. Вот для тех, у кого еще такой приставки нет, эта публикация. Этот пробник я сделал для настройки ВЧ трактов своих спутниковых приемников и использовал совместно с генератором качающейся частоты. Оказалось, что его удобно использовать не только для СВЧ, но и других радиоустройств, даже для тех к которым у меня были заводские измерительные приборы. И последущие 15 лет я постоянно им пользовался.

Основой пробника является СВЧ диод от пеленгаторов или радарных установок. В старой военной технике он часто использовался. Надев на него ПХВ трубку обернул его медной лентой с заземляющим хвостиком и припаял непосредственно на тонкий вывод диода разделительный конденсатор КМ-4а и резистор. Выводом этого конденсатора касался исследуемой схемы. Второй вывод диода и получившийся цилиндр медного экрана завершил пружинящими контактами. Эту насадку одевал на коаксиальную головку осциллографического щупа. Потом я делал такие детекторы с разными диодами как самостоятельные осциллографические щупы. Почему нужен осциллограф? Оказалось, что применение именно осциллографа как индикатора выпрямленного постоянного тока имеет много преимуществ. Во первых у осциллографа высокоомный вход (обычно 1 МОм) и получившийся пробник мало нагружает обмеряемую цепь. К тому же высокоомная нагрузка детектора обеспечивает его линейность, что позволяет измерять очень малые напряжения (милливольты). Высокая чувствительность осциллографа и динамичное отображение огибающей измеряемого сигнала позволяют использовать пробник для сравнения частот методом биений на гармониках радиочастотного генератора (ГСС), наблюдать процессы самовозбуждения схем, большие шумы и вообще сигнал в динамике. Диод детектора предназначен для рабочих длинн

волн ~3 см (10ГГц), поэтому детектор достаточно линеен в широкой полосе частот. И хотя это только индикатор, но и им можно точно измерять величину напряжения или коэффициент усиления устройств используя метод замещения. Прямое же измерение по шкалам осциллографа дает лишь приблизительную оценку уровня сигнала. При применении детектора не подавайте на него напряжение более 1 вольта, иначе испортите диод. Для настройки более мощных устройств, сделайте другой щуп с более высоковольтным диодом, подходящим для ваших целей. В детекторе я применял диоды Д405А,Д405Б,Д605,Д602,КД514А,Д18. Последние два на частотах ниже 1ГГц. Так же область допустимых входных напряжений можно расширить применив емкостной делитель напряжения на входе детектора. Длины выводов для подключения к схеме должны быть как можно короче, нормально 1-2 см. Земляной вывод сделан в виде шинки 10 мм шириной, и при измерениях его нужно подключать в первую очередь. Измеритель- ный шуп забивается в изоляционную шайбу а её закрепляем в корпусе кернением по кругу. Механические нагрузки на конденса тор С1 должны быть исключены, дабы не повредить его обкладки. В этом пробнике выходной сигнал имеет отрицательную полярность. Для смены полярности отобра жения или разверните диод или исполь зуйте инверсный вход осциллографа. Все детали и сам корпус детектора собираются пайкой легкоплавким припоем. Особенно это важно для диода. 73! UO5OHX ex RO5OWG.

gastroguru © 2017