Расчет и выбор приводных звездочек пластинчатого конвейера. Курсовой проект - Расчет цепного пластинчатого конвейера - файл n7.doc

Расчет пластинчатых конвейеров проводится в два этапа: предварительное (ориентировочное) определение основных параметров; поверочный расчет. Исходными данными для расчета являются:

Производительность;

Конфигурация трассы;

Характеристика транспортируемого груза;

Скорость движения полотна;

Режим работы.

В соответствии с ГОСТ22281–92 выбирается тип конвейера и тип настила. Настил применяется трех типов:

Легкий – при насыпной плотности транспортируемого груза ρ< 1т/м 3 ;

Средний – при ρ= 1–2 т/м 3 ;

Тяжелый – при ρ> 2 т/м 3 .

Высота бортов h бортового настила для насыпных грузов выбирается из нормального ряда (по справочнику), для штучных грузов h = 100–160 мм.

Угол наклона конвейера зависит от типа настила и характеристики перемещаемого груза (табл. 2), выбранный угол наклона конвейера должен удовлетворять условию β≤φ 1 -(7-10°), где φ 1 – угол естественного откоса груза в движении.

– угол трения груза о настил

На настиле без бортов насыпной груз располагается по треугольнику (рис. 3) так же, как на ленточном конвейере с прямыми роликоопорами; В – ширина настила, b = 0,85В , φ – угол естественного откоса груза в покое (угол естественного откоса груза в движении φ 1 =0,4φ).

Рис. 3. Расположение насыпного груза на плоском настиле

Площадь сечения насыпного груза на настиле без бортов

где h 1 – высота треугольника;

с 2 – коэффициент, учитывающий уменьшение площади на наклонном конвейере (табл. 3).

Производительность конвейера

Q n =3600F 1 ρv =648 c 2 v ρtgφ1, (2)

где ρ – плотность груза, т/м 3 ;

v – скорость конвейера, м/с;

В п – ширина настила без бортов.

Таблица 3. Значения коэффициента с 2

Ширина настила без бортов

Производительность при настиле с бортами (рис. 4)

Q б =3600Fv ρ. (4)

Рис. 4. Типы бортовых настилов:

а – с подвижными бортами; б – с неподвижными бортами

Площадь сечения груза на настиле с бортами

F=F 2 +F 3 =0,25 k β tgφ 1 +B б hψ, (5)

где В б – ширина настила с бортами, м;

ψ= 0,65–0,8 – коэффициент наполнения сечения настила.

Полученную ширину настила проверяют по условию кусковатости B≥X 2 a+200 мм, где Х 2 – коэффициент кусковатости. Для сортированного груза Х 2 = 2,7; для рядового груза Х 2 = 1,7.

Окончательно выбранные значения ширины настила округляются до ближайших значений в соответствии с нормальным рядом.

Для штучных грузов ширину настила выбирают по габаритным размерам груза, способу его укладывания и количеству, при этом зазор между грузами должен составлять 100–300 мм.

Тяговый расчет. В ходе тягового расчета определяют силы сопротивления и натяжения цепей на отдельных участках трассы.

Максимальное натяжение цепей рассчитывается путем последовательного определения сопротивлений на отдельных участках, начиная от точки наименьшего натяжения.

Минимальное натяжение принимают равным не менее 500 Н на одну цепь (обычно S min = 1–3 кН).

Линейную силу тяжести настила с цепями q 0 (Н/м) определяют по справочникам и каталогам, обычно

q 0 ≈600B+A, (6)

где А – коэффициент, принимаемый в зависимости от типа и ширины настила.

Линейная сила тяжести груза (Н/м)

Максимальное статическое натяжение цепей

где L г и L х – длины горизонтальной проекции загруженной и незагруженной ветвей конвейера, м;

Н – высота подъема груза, м.

Знак «+» в формуле – для участков подъема, «–» – для участков спуска.

Полное расчетное усилие

S max = S ст + S дин, (9)

где S ст – статическое натяжение тяговых цепей, Н;

S дин – динамические нагрузки в тяговых цепях, Н.

Если тяговый элемент состоит из двух цепей, то расчетное усилие на одну цепь учитывается коэффициентом неравномерности ее распределения С н =1,6–1,8.

Расчетное усилие одной цепи S расч = S max , двух цепей S расч = (1,5S max)/2.

Окружное усилие на звездочке

P=ΣW=S ст -S 0 , (10)

где S ст – наибольшее статическое усилие в тяговых цепях в точке набегания на приводные звездочки, полученное методом обхода по контуру, Н;

S 0 – натяжение цепей в точке сбегания с приводной звездочки, Н.

Мощность привода конвейера

где Q – производительность, т/ч;

L г – горизонтальная проекция длины, м;

ω 0 – обобщенный коэффициент сопротивления движению.

Далее производится выбор двигателя, определение передаточного числа и выбор редуктора; определение фактической скорости движения и уточнение производительности; определение статического тормозного момента (для наклонных конвейеров); расчет тормозного момента; определение хода натяжного устройства.

Поверочный расчет включает уточненный тяговый расчет методом обхода по контуру; проверку выбранной тяговой цепи; проверку рассчитанной мощности привода; выбор типа натяжного устройства.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Федеральное агентство по образованию

Тверской государственный технический университет

Кафедра «Строительные дорожные машины и оборудование»

Расчет пластинчатого конвейера

Курсовая работа

Вариант № 4

Выполнил: студент группы

НТС-1204Джафаров И.Р.

Принял: Корнев Г.П.

Тверь 2015 г

Исходные данные:

Производительность Q=400 т/ч

Горизонт. Проекция трассы L=120 м

Высота транспортирования Н=8 м

Класс использования по времени В2

Класс использования производительности ПЗ

Класс использования по грузоподъемности НЗ

Класс использования по нагружению ЦЗ

Место установки - открытая площадка

Тип загрузочного устройства - воронка

Тип разгрузочного устройства - головные звездочки

Вид груза - щебень

Насыпная плотность p=1800 кг/м3

Степень образивности Д

Крупность, размер частиц, a =10…..60 мм

Угол естественного откоса в покое Фn=40

Подвижность частиц - средняя

Введение

1. Определение основных параметров

2. Выбор типа настила и определение его ширины

3. Приближенный тяговый расчет

4. Тяговый расчёт

5. Определение мощности и выбор двигателя

6. Расчёт и выбор редуктора

7. Определение расчётного натяжения тягового элемента

8. Выбор тормоза

10. Выбор муфт

11.Натяжное устройство

Список используемой литературы

Введение

Пластинчатые конвейеры широко распространены в пищевой промышленности и применяются для транспортирования как штучных, так и насыпных грузов, например, соли, известняка и других крупнокусковых грузов. Пластинчатые конвейеры часто являются элементами технологических линий розлива, расфасовки и упаковки пищевых продуктов.

Полотно этих конвейеров изгибается в вертикальной плоскости, а в ряде конструкций (при применении двухшарнирной или круглозвенной цепи) - в горизонтальной.

Устройство пластинчатого конвейера.

Пластинчатый конвейер состоит из приводного устройста, натяжного и пластинчатой катковой цепи с пластинами, образующими настил, движущийся по направляющим, поддерживающим рабочую и холостую ветви конвейера.

Разгрузка происходит с полотна конвейера при проходе лотков через приводные звездочки, а загрузка может производиться через загрузочную воронку в любом месте рабочей ветви конвейера.В передней части пластины для транспортирования сыпучих грузов имеют закругленную форму, перекрывающую часть следующего лотка, что создает непрерывность полотна конвейера.

Плоский безбортовой настил применяется главным образом для транспортирования штучных грузов. Пластины полотна крепятся к звеньям тяговой цепи сваркой, с помощью болтов или заклепок.

1. Определение основных параметров

Определим характеристики транспортируемого груза.

Вид груза - Щебень; ;насыпная плотность груза; угол естественного откоса груза в покое, а в движении; Согласно коэффициент трения груза по стальному настилу для щебня fв=0,47…0,53, принимаем;fв=0,53.

Для заданных условий выбираем двухцепной конвейер общего назначения с длиннозвенными тяговыми пластинчатыми цепями и звездочками с малым числом зубьев. С учетом этого принимаем скорость конвейера.

Рис. 1. Общий вид конвейера.

1 электродвигатель;

2 - рама привода;

3 - разгрузочная воронка;

4- приводная звездочка;

5 - верхний ограждающий,борт;

6 - грузонесущее полотно;

7 - рама конвейера;

8- нижний ограждающий борт;

9 - переходная секция;

10- ограждение переходного устройства;

11 - натяжное устройство;

12 - ограждение

Объемная производительность, соответствующая расчетной производительности, составляет

конвейер настил тяговый натяжение

2. Выбор типа настила и определение его ширины

С учетом параметров груза и выбираем бортовой настил, так как для транспортирования насыпного груза пригодны только конвейеры с бортовым настилом. Согласно для насыпных грузов тип настила выбирают с учётом угла наклона конвейера. Заданный угол наклона конвейера при гладком и волнистом настилах должен удовлетворять условию - угол естественного откоса груза в движении. Волнистый и коробчатые профили обеспечивают возможность транспортирования грузов под углом наклона к горизонту до, при применении гладкого настила угол подъёма не может превышать.

Определим конструкцию настила.

Согласно по ГОСТ 2035-54

выбираем бортовой волнистый настил среднего типа (рис. 5).

Рис. 2. Волнистый бортовой настил.

Определим высоту бортов. Согласно :

Принимаем

Находим требуемую ширину настила.

где - производительность, т/ч;

Скорость конвейера, 0.3 м/с;

Угол естественного откоса груза (щебня) в покое;

Коэффициент угла наклона конвейера, ;

Высота борта, м;

Коэффициент использования высоты борта .

Так как груз мелкокусковой, то проверка настила по гранулометрическому составу груза не требуется.

Из ряда ГОСТ 2035-54, согласно источнику принимаем ближайшее большее значение ширины настила, которому соответствует значение высота бортов h = 200 мм и скорость полотна равная 0.3 м/с

3. Приближенный тяговый расчет

Максимально возможная сила натяжения цепи:

Согласно

где - начальное натяжение цепи, Н;

Горизонтальная проекция полной длины загруженной ветви конвейера, м;

То же для незагруженной ветви конвейера, м;

Линейная нагрузка от ходовой части конвейера, Н/м;

Для металлического настила .

А - эмпирический коэффициент; А=100 -

Коэффициент сопротивления движению ходовой части на прямолинейных участках.

Для катков на подшипниках скольжения

Определим разрывное усилие

По найденному усилию выбираем цепь по ГОСТ 588-81 цепь М450 с максимальной разрушающей нагрузкой 450 кН, шагом

Размеры, мм

Примечания. 1. Шаг цепи / выбирается из ряда: 40; 50; 63; 80;100; 125; 160; 200; 250; 315; 400; 500; 630; 800; 1000.

2. Для цепи М20 / = 40...160; для М28 и М40 / = 63...250; для М56 / = 63...250; для М80 t = 80...315; для Ml 12 / = 80...400; для М160 / = 100...500; для М224 / = 125...630; для М315 / = 160...630; для М450 / = 200...800; для М630 t = 250...1000; для М900 t = 250...1000; для М1250 / = 315...1000.

4. Тяговый расчёт

Принимаем,для пластинчатых конвейеров принимают Smin= 1000…2000 Н

Натяжение в характерных точках контура:

где коэффициент увеличения цепи при огибании звёздочки )

Тяговое усилие на приводных звездочках:

5. Определение мощности и выбор двигателя

Тяговое усилие на приводной звёздочке или окружная сила на приводной звёздочке: при кзв = 1,1 по

При КПД привода конвейера з=0,85 требуемая мощность двигателя определяется по формуле

где W - окружная сила на приводной звездочке, Н; х - скорость конвейера; з - КПД передаточного механизма привода конвейера; предварительно можно принять з = 0,85...0,95.

Установочная мощность двигателя:

Коэффициент учитывающий возможное увеличение потерь =1.1

Марка двигателя

nДВ, об/мин

Типоразмер редуктора

Из таблицы П2.6. выбираем электродвигатель серии 4А225М8У3 с мощностью N=30 кВт при частоте вращения n=735 об/мин

В конвейерах используют двигатели общего назначения серии АИР. Выбирая двигатель, следует учитывать, что при одной и той же мощности двигатели с большей частотой вращения имеют меньшую массу, поэтому они предпочтительнее. Окончательный выбор частоты вращения проводят после кинематического расчета.

Кинематический расчёт.

Zзв- число зубьев звездочки, принимаем Zзв=8 ( прил. LXXXIII)

Диаметр начальной окружности приводной звездочки

D=1.3( прил. LXXXIII), м

Частота вращения приводной звездочек (приводного вала)

nзв =60х/(рDзв)=600,3/(3,141.3)=4,41 об/мин

Передаточное число привода определяется по отношению частот вращения выбранного по мощности электродвигателя

Передаточное число редуктора

u=nдв/ nзв=735/4,41 =147

В качестве передачи мощности возможно использовать редуктор

Ц3У-250 (прил.3.7)

Определяем крутящий момент на приводном валу

В качестве передаточного механизма привода конвейера общего назначения используют стандартные редукторы, поэтому по полученному передаточному числу выбирается стандартный редуктор. При этом мощность, которую может передать редуктор, должна быть больше мощности электродвигателя на 15...25%. Схему исполнения редуктора выбирают в зависимости от компоновки приводной станции.

6. Расчёт и выбор редуктора

Определяем диаметр звёздочки

Определяем передаточное число привода

Расчётная мощность редуктора

где к = 0.65 при непрерывной работе привода в течении 24 часов в сутки и при нагрузке с умеренными толчками

Принимаем редуктор Ц3У-250 с номинальным передаточным числом 160

Эскиз редуктора

Эскиз редуктора Эскиз присоединительных валов

7. Определение расчётного натяжения тягового элемента.

Расчётное усилие в цепи: согласно

Определяем динамическое усилие по формуле (97)

Расчётная скорость цепи

Разрывное усилие цепи:

Так как разрывная нагрузка меньше, чем у выбранной цепи, то окончательно останавливаемся на тяговой цепи М450 (ГОСТ 588-81) с шагом t = 500мм.

8. Выбор тормоза

Для наклонных конвейеров тормоз необходимо предусматривать при условии:

g(qг+ q0)H>W0

Статический тормозной момент при самопроизвольном обратном ходе ходовой части при выключенном электродвигателе

где Ст- коэффициент возможного уменьшения сопротивления движению; Ст= 0,6…0,75; Dзв- диаметр начальной окружности звездочки, м; з - КПД привода.

Расчетный тормозной момент определяется по формуле

где Кт - коэффициент запаса торможения; Кт = 1,5…1,75.

Исходя из расчетного тормозного момента по каталогам выбирается

тормоз (см. прил. П4), согласно.

Отрицательное значение силы означает, что сила трения элементов конвейера выше силы скатывания груза, а следовательно нет необходимости в применении тормозного устройства.

10. Выбор муфт

Муфта для быстроходного вала

Для соединения двигателя с редуктором часто используют упругие втулочно-пальцевые МУВП, т.к. может потребоваться установочные тормоза с тормозным шкивом. Расчетно-тормозной момент определяется по формуле

Tрб=TзвK1K2,

где K1 - коэффициент безопасности, согласно K1=1,3

K2 - коэффициент режима работы, для среднего режима работы K2=1,2

Tрб=(955039,5/700) 1,31,2 = 841 Нм

Принимаем муфту со следующими параметрами (прил. П5.4) Dт=300мм, d=65мм, B=55мм, m=38кг, I=1,13кгм2, Tmax=1100 Нм

(У редуктора dб=50мм,а тут d=65мм;все параметры с d=65мм возьмем на заготовку и рассверливаем под dб=50мм.)

Эскиз муфты

Муфта для тихоходного вала

Для соединения выходного вала редуктора с валом приводной звездочки обычно используют зубчатую или цепную муфту. Применим зубчатую муфту со следующими параметрами

TT"=TрбUобщK1K2зобщ=841501,31,20,65 = 65,5 кНм

Принимаем:МЗ

D=445мм, d=220мм, l=1,4кгм2,мм, m=382кг, Tmax=71кНм

(У редуктора dт=110мм,а тут d=220мм;все параметры с d=220мм возьмем на заготовку и рассверливаем под dт=110мм.)

Эскиз муфты

Эскиз муфты

11.Натяжное устройство

Как правило, используют винтовое натяжное устройство.(согласно рекомендации)

1- Головка винта.

4-Опора (Ползун).

Рис 10.Схема натяжного винтового устройства.

Сводится к расчету передачи винт-гайка. Средний диаметр резьбы винта:

Согласно ().

где -осевая нагрузка на винт;-коэффициент высоты гайки;=1,5……2;-допускаемое давление в резьбе; для закаленной стали по бронзе =8….10;(стр. 94)

Высота гайки,остальные размеры гайки получаются конструктивно.

Список используемой литературы

3. «Проектирование подъемно-транспортных установок», Степыгин и др, 2005 год

5. «Справочник по расчетам механизмов подъемно-транспортных машин», Марон, Кузьмин, 1990 год

7. «Расчеты грузоподъемных машин и транспортирующих машин»,Иванченко, 1985 год

11. «Транспортирующие машины», Спиваковский, 1983 год

14. «Справочник по расчетам ленточных конвейеров», Зеленский, 1986 год

15. «Машины непрерывного транспорта», Зенков, 1988 год

16. « Редукторы и мотор-редукторы. Каталог-справочник». Часть 1. - М.: НИИ информации по машиностроению, 1973 год

17. «Справочник конструктора-машиностроителя», Анурьев, 1980год

Размещено на Allbest.ru

Подобные документы

    Расчет пластинчатого конвейера, транспортирующего руду: определение ширины настила, максимального натяжения цепей, общего тягового усилия, мощности привода, статического тормозного момента, хода натяжного устройства, винта на сжатие, выбор подшипников.

    курсовая работа , добавлен 28.07.2010

    Расчет параметров горизонтального пластинчатого цепного конвейера. Выбор типа конвейера и типа настила. Определение нагрузок на транспортную цепь. Расчет и подбор редуктора. Расчет приводного вала, натяжного устройства, винта натяжного устройства.

    курсовая работа , добавлен 13.08.2015

    Проектирование наклонного ленточного конвейера, транспортирующего сортированный мелкокусковой щебень. Тяговый расчет конвейера. Выбор натяжного устройства привода, ширины ленты, двигателя, редуктора, тормоза, муфт. Определение диаметров барабанов.

    курсовая работа , добавлен 18.01.2014

    Скорость движения тягового органа конвейера. Выбор тележки и тягового элемента. Определение погонной нагрузки. Тяговый расчет конвейера по контуру. Расчет тягового усилия и мощности привода. Проверка прочности тягового органа и расчет механизма натяжения.

    курсовая работа , добавлен 22.11.2009

    Общее описание конструкции. Расчет пластинчатого конвейера: ширины полотна конвейера, а также нагрузок на транспортную цепь. Расчет и выбор электродвигателя, редуктора, тяговой цепи, натяжного устройства, подшипников, тормозного устройства, звездочек.

    курсовая работа , добавлен 16.12.2014

    Определение основных параметров наклонного пластинчатого конвейера и расчет его конструкционных параметров. Анализ прочности наиболее ответственных элементов конвейера, оценка нагрузок на валы, выбор двигателя и редуктора и проект натяжного устройства.

    курсовая работа , добавлен 03.11.2010

    Определение параметров конвейера и расчетной производительности. Выбор ленты и расчет ее характеристик. Определение параметров роликовых опор. Тяговый расчет ленточного конвейера. Провисание ленты и ее напряжение на барабане. Выбор двигателя, редуктора.

    реферат , добавлен 28.12.2012

    Исследование условий и режимов работы конвейера. Выбор вида тягового органа, направляющих и поддерживающих устройств конвейера. Определение угла наклона конвейера и длины горизонтальной проекции трассы. Тяговый расчет методом обхода трассы по контуру.

    курсовая работа , добавлен 17.02.2014

    Расчет параметров ленточного конвейера для транспортировки насыпного груза. Описание конструкции конвейера. Проверка возможности транспортирования груза. Определение ширины и выбор ленты. Тяговый расчет конвейера, его приводной и натяжной станций.

    курсовая работа , добавлен 23.07.2013

    Годовая производительность, временной ресурс машины. Определение мощности привода и тягового усилия, выбор цепи. Вращающие моменты на входе и выходе редуктора. Подбор подшипников для приводного вала. Компоновка привода конвейера. Выбор и расчет муфт.

Для расчёта пластинчатого конвейера должны быть заданы те же исходные данные, что и для ленточного конвейера.

1) Определение основных параметров. На настиле с бортами площадь сечения насыпного груза F равна сумме площадей треугольника F 1 и прямоугольника F 2 (рис. 15.4).

где - углы естественного откоса груза в движении (j д ) и в покое j ;

k b - коэффициент уменьшения площади сечения треугольника на наклонном

конвейере; (k b =1, при b =0 ; k b =0,9 при b >20 о)

h б - высота слоя груза у борта, м.

Обозначим k n =tg(0,4j )k b - коэффициент производительности

F =0,25В 2 k n +Bh б

Производительность конвейера

Отсюда , м

h б = (0,65¸0,8)h (h - полная высота бортов).

При крупнокусковом грузе можно считать, что груз располагается на настиле равным прямоугольным слоем, т.е. F 1 =0, а F 2 =F =Bhy ,где y = 0,8¸0,9 - коэффициент наполнения сечения. Полученную ширину настила В необходимо проверить по кусковатости груза

где а - крупность типичных кусков груза, мм;

Х - коэффициент; Х = 1,7 и 2,7 соответственно для рядового и сортированного груза.

Окончательно выбранные ширина настила и высота бортов округляются до ближайших больших по ГОСТ.

Для штучных грузов ширина настила выбирается по размерам груза и способу транспортирования. Скорость движения настила принимают обычно в переделах 0,05-0,63 м/с и не превышает 1 м/с.

2) Тяговый расчёт ведут методом обхода по контуру, начиная обход с точки минимального натяжения цепи; обычно S min =1-3кН. Сопротивления на прямолинейных участках определяют по формулам:

Сопротивление на поворотных звёздочках определяют также как и для барабанов

S сб =KS нб , (K =1,05¸1,1)

РАСЧЕТНА РАБОТА

ПЛАСТИНЧАТЫЙ КОНВЕЙЕР

1.1 Цель работы

Изучить конструкции, общие сведения, принципы действия конвейеров и методы определения основных параметров.

1.2 Определение пластинчатого конвейера

Транспортирующими называют технические средства непрерывного действия для перемещения массовых сыпучих и штучных грузов по определенным линейным трассам. Их делят на конвейеры и устройства трубопроводного транспорта.

По принципу действия различают конвейеры, в которых груз перемещается в результате механического контакта с транспортирующим элементом (лента, пластина, ковш, скребок, шнек, ролики), и пневмотранспортные установки, в которых перемещение сыпучего груза осуществляется самотеком или потоком сжатого воздуха.

Пластинчатый конвейер - транспортирующее устройство с грузонесущим полотном из стальных пластин, прикрепленным к цепному тяговому органу.

При транспортировании материалов с острыми кромками (для подачи крупнокускового камня в дробилки) применяют пластинчатые конвейеры, у которых тяговым органом являются две бесконечные цепи, огибающие приводные и натяжные звездочки. К тяговым цепям прикрепляют металлические пластины, перекрывающие друг друга и исключающие просыпание материала между ними (рисунок 1.2). Допустимый угол наклона пластинчатого конвейера с плоскими пластинами меньше чем у ленточного, т.к. угол трения материала грузов о металл в 2,5÷3,0 раза меньше, чем о резинотканевую ленту. Фасонные пластины, имеющие поперечные выступы на рабочих поверхностях, позволяют увеличить угол наклона конвейера. Пластинчатые конвейеры применяют также для перемещения горячих материалов, деталей и изделий на заводах строительных конструкций.

Характеристики пластинчатых конвейеров:

· толщина пластин – от 3 мм

· ширина полотна – от 500 мм

· скорость движения полотна – от 0.6 м/с

· производительность – от 250 до 2000 т/ч

· угол наклона установки – до 45º

Рабочие инструменты пластинчатых конвейеров:

· пластичное полотно

· ходовые ролики

· тяговый орган

· приводная станция

натяжная станция

Преимущества:

· возможность транспортирования более широкого (по сравнению с ленточными конвейерами) ассортимента грузов;

· способность транспортирования грузов по трассе с крутыми подъёмами (до 35°-45°, а с ковшеобразными пластинами - до 65°-70°);

· возможность транспортирования грузов по сложной пространственной траектории;

· высокая надёжность.

Недостатки:

· малая скорость движения грузов (до 1,25 м/с);

· как и у других цеплных конвейеров:

· -большая погонная масса конвейера;

· -сложность и дороговизна эксплуатации из-за наличия большого количества шарнирных элементов в цепях, требующих регулярной смазки;

· -больший расход энергии на единицу массы транспортируемого груза.

1 – металлические пластины; 2 – натяжные звездочки; 3 – две бесконечные цепи; 4 – приводные звездочки.

Рисунок 1.2 – Пластинчатый конвейер

1.3 Расчет основных параметров пластинчатого конвейера

Пластинчатый конвейер применяется для перемещения штучных грузов, по данному условию необходимо вычислить основные характеристики представленного конвейера.


Рисунок 1.9 – Схема пластинчатого конвейера

Исходные данные:

Конвейер пластинчатый с безбортовым плоским настилом;

а=400 мм – размер груза;

Q ГР =1,10 кН – вес груза;

П=1350 кН/час – производительность конвейера;

L =40 м – длина конвейера;

Условия работы - тяжелые

1.3.1 Определяем ширину настила В Н :

=400+100=500 (мм) (1.1)

где: а=400 мм – заданный размер груза;

А=100 мм – запас ширины настила.

Скорость полотна υ , м/сек , пластинчатого конвейера выбираем по таблице 1.10, по ширине настила

, равной 500 мм .

Следовательно υ =0,4 м/сек.

В качестве тягового органа используются две пластинчатые втулочно-катковые разборные цепи ВКГ со специальными пластинами с шагом t =320 мм (согласно таблице 1.11), по ширине настила В Н =500 мм , и с разрушающей нагрузкой S Р =500 кН.

Таблица 1.11 – Размеры шагов пластинчатых цепей

Ширина настила, , мм
Шаг цепи, t , мм

Определяем погонную весовую нагрузку от груза q , кН/м :

( ), (1.2)

где: П=1350 кН/час – производительность конвейера;м ), (1.3)

где: Q ГР =1,10 кН – вес одного груза;

q=0,9375 кН/м – погонная весовая нагрузка.

Принимаем значение шага t ГР , м , с округлением в большую сторону. Тогда t ГР =1,17 м.

Вычисляем погонную нагрузку от ходовой части конвейера q К , кН/м , с помощью эмпирической формулы для тяжелых условий работы настила:

( Тип настила

Ширина настила без бортов,

, м

1,0 и более

Легкий Средний Тяжелый

Из таблицы 1.13 выбираем коэффициент сопротивления движению ω , в предположении, что диаметр валика цепи более 20 мм . Следовательно ω=0,120.

Принимаем наименьшее натяжение цепей в точках их сбегания с приводных звездочек =15,666 (кН ), (1.5)

где: кН - наименьшее натяжение цепей;

ω=0,120 коэффициент сопротивления движению;

q=0,9375

q К =0.98

L=40 м – длина конвейера;

Н=0 м – высота подъема;

W Б – сопротивление трения груза о неподвижные борта, кН , (так как борта в данном случае отсутствуют, то W Б =0 );

W П.Р. – сопротивление плужкового погрузчика, кН , (так как погрузка осуществляется через концевой барабан, то W П.Р =0 ).

Определяют ширину настила, выбирают тяговый элемент и находят мощность электродвигателя.

пластинчатый конвейер тяговой электродвигатель

Рис. Поперечное сечение сыпучего груза, расположенного на настиле пластинчатого конвейера: а -- без бортов; б -- с бортами; в -- с неподвижными бортами.

При определении ширины плоского настила без бортов слой груза в нем имеет в сечении форму треугольника (рис. а). Площадь поперечного сечения груза (м 2) определится как F 1 = C 1 *b*h 1 /2 = C 1 *b 2 *tg(ц 1)/4 = 0,18*B 2 н *С 1 *tg(ц 1) (1) где b -- ширина основания груза, лежащего на настиле; b = 0,85В н; В н -- ширина настила, м; h 1 -- высота слоя груза, м; С 1 -- коэффициент, учитывающий уменьшение площади поперечного сечения груза при его поступлении на наклонный участок транспортера (табл.); ц 1 -- угол при основании треугольника; ц 1 = 0,4*ц; ц -- угол естественного откоса.

Значения коэффициента С 1 для пластинчатых конвейеров

Используя формулу Q=3,6*F*p м *х, производительность (т/ч) пластинчатого конвейера с учетом формулы (1) можно записать как

Q = 3,6*F 1 p м х = 0,648*B н 2 *С 1 *р м *х*tg(ц).

Тогда ширина настила без бортов будет (м)

B = v(Q/(0,648*С 1 *р м *х*tg(ц)))

При настиле с бортами (как подвижными, так и неподвижными, (рис. б, в) площадь поперечного сечения груза на настиле складывается из площадей

F = F 2 + F 3 = B нб h 2 C 1 /2 + B нб h 3

При коэффициенте заполнения желоба, образованного настилом и бортами (ш = h 3 /h), который принимают равным 0,65...0,80, будем иметь (м 2)

F = 0,26*B 2 нб *C 1 *tg(ц 1)+B нб *h*ш

Используя эту и формулу Q=3,6*F*p м *х, получим выражение для определения массовой производительности (т/ч) пластинчатого конвейера, имеющего настил с бортами,

Q = 3,6*F*p м х = 0,9*В нб *p м *х*

Из этой формулы можно определить ширину настила, задавшись всеми необходимыми параметрами и высотой борта h. Решая квадратное уравнение, получим (м)

Можно, задавшись B нб, определить h. Полученные значения ширины настила и высоты бортов округляют до ближайших больших по государственному стандарту, а скорость тягового элемента пересчитывают. Ширину настила при транспортировании штучных грузов выбирают в зависимости от габаритов груза так же, как и для ленточных.

Скорость тягового элемента при определении геометричс ских параметров пластинчатого конвейера принимают в пределах 0,01...1,0 м/с, так как его работа с большими скоростями приводит к значительному увеличению динамических усилий.

Тяговый расчет пластинчатого конвейера выполняют аналогично расчету ленточного. Однако ввиду того что закон Эйлера к приводу цепного конвейера неприменим, при его расчете необходимо задаться величиной минимального натяжения тягового элемента. Обычно рекомендуют принимать S min = 1000...3000 Н.

Сопротивления перемещению тягового элемента с прямым настилом и движущимися бортами определяют по выражениям (W пр =(q+q k)gL(fcosб±sinб)) или (W пр =g(q+q k)(щ 1 L г ±H)). Величина нагрузки q 0 для пластинчатых транспортеров q 0 =(q+q k), где q k -- сила тяжести 1 м тягового элемента с настилом. Величину q k (кг) ориентировочно можно определить по выражению q k =60В н +А п где коэффициент А п принимают по таблице 10.

Коэффициент сопротивления движению ходовых катков по направляющим можно вычислить по формуле или выбрать по таблице

Таблица

Примечание. Меньшие значения относятся к тяжелым цепям с катками увеличенного диаметра.

В конвейерах с неподвижными бортами (рис. б), перемещающих сыпучие грузы, необходимо учитывать дополнительные сопротивления, возникающие от трения груза о борта. Рекомендуется следующее выражение для определения этих сопротивлений (Н):

W б = fh 2 p м gK б l б

где f -- коэффициент трения груза о стенки борта; K б -- коэффициент, учитывающий уменьшение горизонтального давления от слоя груза на стенки бортов;

K б =х+l,2/l+sinц;

l б -- длина бортов, м.

Далее выбирают тип тягового элемента, определяют размеры звездочек, мощность электродвигателя. При выборе типа цепи следует учесть, что если передача тягового усилия осуществляется двумя цепями, то тяговое усилие (Н) на одну цепь определяют с учетам неравномерности распределения его между цепями:

Sст1=1,15Sст/2

При скорости транспортирования более 0,2 м/с цепь следует подбирать по полному расчетному усилию с учетом динамических нагрузок по формуле

(Sp=S+m60х 2 /z 2 t ц).

Пример расчёта пластинчатого конвейера

Исходные данные: перемещаемый груз -- мешки с мукой массой G г = 60 кг, размеры мешка 250Х450Х900 мм, производительность Q = 300 шт/ч, коэффициент неравномерности К н =1,5. Схема трассы и размеры конвейера приведены на рисунке а.

Рис.

  • 1. Исходя из размеров груза и угла наклона конвейера, принимаем бортовой плоский настил шириной В н =500 мм и высотой борта h=100 мм.
  • 2. Определяем расчетную производительность конвейера Q p = Q*K н = 300*1,5 = 450 шт/ч.
  • 3. Задаемся скоростью тягового элемента х=0,2 м/с. Тогда расстояние между транспортируемыми мешками определится как a = 3600*х/Q p = 3600*0,2/450 = 1,6 м.
  • 4. В качестве тягового элемента принимаем две пластинчатые катковые цепи с катками на подшипниках скольжения.
  • 5. Определяем массу, приходящуюся на 1 м, от груза q=G г /a=60/1,6=37,5 кг/м

настила с тяговым элементом по формуле (q k =60В н +А п) q к =60*0,5+40=70 кг/м, где коэффициент A п взят по таблице для легкого настила при В н =0,5 м.

6. Выполняем тяговый расчет конвейера, принимая за точку с минимальным натяжением точку 2 (рис. а), так как на участке 1--2 величина Lг2щx.к

Расчет сопротивлений перемещению тягового элемента пластинчатого конвейера (см. рис. а)

Участок и вид сопротивления

Расчетные формулы

Примечание

Величина 5mln выбрана по вышеприведенным рекомендациям

Сопротивление ne-ремещению тягового элемента на прямо- 7„ с„ „ nq „ „. линейном участке 2-1

S 1 =S 2 -gq k L г2 щ хк + gq k H=1000-9,81*70*50*0,09+ 9,81*70*5= 1000-3100+3440

Величину сопротивления принимаем со знаком минус, так как контур обходим против часовой стрелки

Для нахождения величины S3 использована формула, соответствующая движению тягового элемента по криволинейной направляющей выпуклостью вниз, причем учитываем только первый член, так как второй учтён при расчете сопротивлений на прямолинейных участках

Сопротивление перемещению тягового элемента на криволинейном участке 2--3

S 3 = S 2 e щxk*ц = S 2 e 0,09*0,1 = 1,01S 2

Коэффициент сопротивления wx .к принимаем по таблице 11 для средних условий работы

Сопротивление перемещению тягового элемента на прямолинейном участке 3--4

S 4 = S 3 +q k gL г1 щ хк = 1010+9,81*70*30*0,09

Сосредоточенное сопротивление при огибании натяжной звездочки.

S 5 = оS 4 = 1,06*2860

При б= 180°о= 1,06

Сопротивление перемещению тягового элемента на прямолинейном участке 5--6

S 6 = S 5 = g(q+qk)L г1 щ хк = 3030+ 9,81(37,5+ 70)30*0,09

Сопротивление перемещению тягового элемента на криволинейном участке 6--7

S 7 = S 6 e щxk*ц = 5870*1,01

То же, на участке 7-8

S 8 = S 7 = g(q+qk)L г2 щ хк = g(q+q k)H= 5930+ 9,81(37,5+70)50*0,09+ 9,81(37,5+70)5

По величинам натяжений в характерных точках строим диаграмму натяжений тягового элемента (рис. б). Максимальным натяжением будет натяжение в точке 8. По этому натяжению определяем величину нагрузки, действующей на одну цепь, с учетом формулы (S ст1 =1,15S ст /2). Принимая коэффициент запаса прочности n ц =10, определяем величину разрушающей нагрузки по формуле (S раз =S max n ц)

S paз = 1,15*n ц *S 8 /2 = 1,15*15945*10/2 = 91683 Н.

По величине S paз подбираем катковую цепь M112-4-160-2 ГОСТ 588--81 с t ц =160 мм, d ц =l5 мм. Для выбранной цепи S paз по государственному стандарту равна 112 кН. Так как скорость тягового элемента невелика, то динамическую нагрузку, действующую на цепь, не учитываем.

7. Величина тягового усилия будет

Р = (S 8 --S 1)*о = (15945 -- 1340)*1,06= 15470 Н.

8. Мощность электродвигателя при передаточном механизме с з=0,8 будет (см. формулу) N=15470*0,2/(1000*0,8)=3,9 кВт

По величине N из каталога выбираем электродвигатель 4А112МВ6УЗ с N д =4,0 кВт и n д =950 об/мин.

Скребковые конвейеры

Под понятием скребковые конвейеры подразумевается группа машин непрерывного действия с тяговым элементом, отличительным признаком которых является рабочий орган, выполненный в виде скребка. Скребковые конвейеры обычно классифицируют по этому признаку и с его учетом их подразделяют на конвейеры:

со сплошными высокими скребками (высота скребка приблизительно равна высоте желоба, в котором перемещается груз);

с погруженными скребками.

К конвейерам с погруженными скребками относят конвейеры со сплошными низкими скребками, с контурными скребками, трубчатые.

Область применения скребковых конвейеров достаточно широка. Их используют на предприятиях пищевой и зерноперерабатывающей промышленности, в угольных шахтах, химической промышленности для транспортирования сыпучих и кусковых грузов. Возможность изготовления герметичного желоба позволяет применять их для транспортирования пылящих и горячих грузов.

К достоинствам скребковых конвейеров относят простоту конструкции, герметичность желобов, возможность загрузки и вьщрузки в любой точке горизонтального или наклонного участка трассы.

Недостатками являются сравнительно быстрый износ шарниров цепи и желоба, повышенная мощность привода вследствие трения груза и скребков о желоб, истирание частиц транспортируемого груза.

gastroguru © 2017